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Abstract

The primary contribution of this thesis is to introduce and examine the planar modular partition monoid
for parameters m, k € Z~q, which has simultaneously and independently generated interest from other

researchers as outlined within.

Our collective understanding of related monoids, in particular the Jones, Brauer and partition monoids,
along with the algebras they generate, has heavily influenced the direction of research by a significant
number of mathematicians and physicists. Examples include Schur-Weyl type dualities in representation
theory along with Potts, ice-type and Andrew-Baxter-Forrester models from statistical mechanics, giving

strong motivation for the planar modular partition monoid to be examined.

The original results contained within this thesis relating to the planar modular partition monoid are: the
establishment of generators; recurrence relations for the cardinality of the monoid; recurrence relations
for the cardinality of Green’s R, £ and D relations; and a conjecture on relations that appear to present
the planar modular partition monoid when m = 2. For diagram semigroups that are closed under vertical
reflections, characterisations of Green’s R, £ and H relations have previously been established using the
upper and lower patterns of bipartitions. We give a characterisation of Green’s D relation with a similar

flavour for diagram semigroups that are closed under vertical reflections.

We also give a number of analogous results for the modular partition monoid, the monoid generated by
replacing diapses with m-apses in the generators of the Jones monoid, later referred to as the m-apsis

monoid, and the join of the m-apsis monoid with the symmetric group.

A further contribution of this thesis is a reasonably comprehensive exposition of the fundamentals of
diagram semigroups, which have traditionally been approached from the representation theory side and

have since blossomed into a thriving area of research in their own right.
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Chapter 1

OpuCTIoN

As with any increasingly vast body of human knowledge, to give an exhaustive historical account would
quickly turn into its own body of work. Nevertheless the author has attempted to provide the reader
with a historical account of where, how and why the diagram semigroups relevant to this thesis arose

and have since blossomed into a thriving area of research in their own right.

In 1896, Eliakim Moore [49] established a presentation by way of generators and relations for the symmet-
ric group Si. Later in 1927, Issai Schur [55] identified that a duality, now famously known as Schur-Weyl
duality, holds between the symmetric group algebra C[Si] and the general linear group GL,(C) (in-
vertible n X n matrices over the complex field C with a fixed ordered basis). Ten years later Richard
Brauer [8] identified that an analogous duality holds between what is now-known as the Brauer algebra
C¢[B}] and the orthogonal group O, (C), it would be almost impossible to overstate the influence that
the identification of these dualities has since had on the direction of research by a significant number of

mathematicians and physicists.

Then in 1971, Neville Temperley and Elliott Lieb [60] identified what is now known as the Temperley-Lieb
algebra, from which certain transfer matrices may be built. An understanding of the Temperley-Lieb
algebra has played an important role in statistical mechanics, in particular, as noted by Ridout and Saint-
Aubin [54], with Potts models [48], ice-type models [6] and Andrew-Baxter-Forrester models [2]. The
Temperley-Lieb algebra was later rediscovered independently by Jones [36] in 1983, identifying what is
now famously known as the Jones polynomial in knot theory. The planar diagrams in the Brauer monoid,

typically referred to as either the Jones or Temperley-Lieb monoid, form a basis of the Temperley-Lieb
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algebra.

The Partition monoid was then introduced independently by Jones [37] and Martin [47] after both
considered generalisations of the Temperley-Lieb algebra and Potts models from statistical mechanics.
Jones [37] did so when considering the centraliser of the tensor representation of the symmetric group
S, (when treated as the group of all n x n permutation matrices) in the endomorphism ring End(V ®¥),

where V is an n-dimensional vector space on which S,, acts diagonally on V&,

Graham and Lehrer [28] introduced and provided a unified framework for obtaining a great deal of
information about the representation theory of what are referred to as cellular algebras. East [14] then
showed that under certain compatibility assumptions, the semigroup algebra of an inverse semigroup is
cellular if the group algebras of its maximal subgroups are cellular, while Guo and Xi [31] and Wilcox
[63] later examined cellularity for twisted semigroup algebras, allowing the cellularity of such algebras to

be established using the theory on cellular algebras introduced in [28].

Motivated to generalise the aforementioned duality results from Jones [37], Tanabe [59] examined the
centraliser algebra in the endomorphism ring of V®* on which the unitary reflection groups of type
G(m, p,n) act diagonally, where G(m, p,n) is an index-p subgroup of G(m, 1,n), and G(m, 1,n) is a group
of n X n matrices whose non-zero entries are mth roots of unity. Note that the unitary reflection groups
were introduced by Shephard and Todd [56]. A year later, FitzGerald and Leech [26] independently
examined the structure of both the monoid of block bijections and monoid of uniform block bijections Fx,
which has previously been described as the largest factorisable inverse submonoid of the dual symmetric
inverse semigroup Z; (see [24]). Kosuda [38] then identified that in the case where m > k, the centraliser

algebra considered by Tanabe corresponds to the monoid of uniform block bijections §y.

Fitzgerald [24] and Kosuda [38] both independently gave the same presentation by way of generators and
relations for the monoid of uniform block bijections §x. While the aforementioned presentation of §; was
economical in terms of the number of generators used, the inherent symmetry possessed by the monoid
of uniform block bijections §; was not reflected in the defining relations. With the addition of more
generators, Kosuda [38] and Kudryavtseva and Mazorchuk [45] also independently gave an equivalent set
of relations that better reflected the symmetry possessed, and using the same set of generators East [15]
also arrived at an equivalent set of defining relations. Kosuda [41] further constructed a complete set of

representatives of the irreducible representations of the algebra of uniform block bijections C¢[g4].

Kosuda [40] later identified that in the case where m < k then the centraliser algebra considered by



Tanabe corresponds to the modular partition monoid Mj'. Furthermore, in [42] Kosuda presented a
candidate of the standard expression of the modular partition monoid M;', and in [43] established a

presentation by way of generators and relations for the modular partition monoid M} for all 1 < m < k.

A number of presentations by way of generators and relations have recently been given for diagram
semigroups: Halverson and Ram [33] gave presentations for the planar partition monoid PPj and the
partition monoid Py, with their exposition since becoming reasonably famous as a survey-style treatment
of the partition algebras; Kudryavtseva and Mazorchuk [45] gave presentations for the Brauer monoid
By, the partial Brauer monoid and, as previously mentioned, the monoid of uniform block bijections
$k; Posner, Hatch and Ly [52] have suggested a presentation of the Motzkin monoid, though the paper
appears to remain in preprint; and Easdown, East and FitzGerald [13] gave a presentation for the dual

symmetric inverse monoid, which may also be described as the monoid of block bijections.

Motivated by Fauser, Jarvis and King’s work on symmetric functions and generalised universal characters
[20, 21, 22, 23], Fauser put the idea forward to Jarvis that it may be fruitful to consider the consequences
of replacing the diapses in the generators of the Jones and Brauer monoids with triapses. When the
author sought suggestions from potential supervisors on possibly suitable doctoral research topics, Jarvis
shared this idea from Fauser. The author felt like the topic had more than enough potential to be fun,
which it most certainly has been, while also appearing to have the potential for applications which seems

increasingly promising.

During a visit to Leeds in July of 2015, James East had a discussion with Chwas Ahmed, who is currently
one of Paul Martin’s doctoral students. It turned out Ahmed has also been examining the planar modular
partition monoid during his candidacy. In a preprint on the arXiv, Ahmed, Martin and Mazorchuk [1]
study the number of principal ideals, along with the number of principal ideals generated by an element

of fixed rank, of the (planar) modular partition monoids.

The remainder of the thesis is organised as follows. In Chapter 2 we: outline general notation, terminology
and results that will be useful at various stages throughout; give a reasonably comprehensive construction
of the fundamentals of diagram semigroups from scratch; and review known presentations for a number
of contextually relevant diagram semigroups. In Chapter 3 we: characterise the monoid generated by
m-apsis generators, which we refer to as the m-apsis generated diagram monoid @'; characterise the
join of the m-apsis generated diagram monoid @;" with the symmetric group S, which we refer to as

the crossed m-apsis generated diagram monoid X@}'; and establish a minimal generating set for the

planar modular partition monoid PM}'. In Chapter 4 we give recurrence relations for the cardinalities
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of the (crossed) m-apsises generated diagram monoids |4;"| and |[X@}"|, along with the (planar) modular
partition monoids |PM}'| and |M}'|. In Chapter 5 we begin by giving a characterisation of Green’s D

*

relation for diagram semigroups closed under the vertical flip involution *, then count the number of
Green’s D, R and L relations for the modular and planar modular partition monoids. In Chapter 6
we conjecture a presentation of the planar modular-2 partition monoid, establish a bound on reduced

[Pﬁli—words and conjecture a number of further results on the quest to identify candidates for [Pim’li—words

in normal form.



Chapier 2

BREFGROUND

B 2.1 Preliminary notation and terminology

The reader may find it of use to have precise definitions for the terminology and notation that will be used
consistently throughout this thesis. Whenever it has been possible to do so the author has attempted to
select terminology and notation that, at least in the author’s opinion, is preferably descriptive, succinct,
unambiguous and grammatically correct. Furthermore, the author has also attempted to select termi-
nology and notation that is commonly used, at least in the author’s experience, however the terminology
and notation that the author has selected comes from a range of different sources rather than being

identical to any particular reference on related literature.

§ 2.1.1 Sets
2.1.1 Definition: We denote by:

(i) R the set of real numbers; and

(ii) Z the set of integers, that is Z ={...,-2,-1,0,1,2,...}.
Furthermore for each integer z € Z and subset of the integers A C Z, we denote by:

(i) Z>, the set of integers greater than or equal to z, for example Z>o = {0,1,2,...} is the set of

non-negative integers;
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(ii) Z~, the set of integers greater than z, for example Z~o = {1,2,3,...} is the set of positive integers;

and

(iii) zA the set {za : a € A}, for example 2Z = {...,—2z,—2,0,2,2z2,...}, 2Z>o = {#,22,32,...} and

2Z>0 =1{0,2,2z,...}.

2.1.2 Definition: For each real number 2 € R, we denote by |z | the greatest integer less than x, which

is typically referred to as the floor of x.

2.1.3 Definition: Given sets A and B, we denote by:

(i) A — B the set containing elements of A that are not elements of B as A — B, thatis A— B ={a €

A:a¢ B}

(ii) A x B the Cartesian product of A and B, that is the set {(a,b) : a € A,b € B}.

Furthermore given n € Z>4 sets Ay, ..., A,, we denote by:

(i) Ui, A; the union of A4, ..., A4,; and

(ii) (i, A4; the intersection of Ay,..., A,.

§ 2.1.2 Families of subsets

2.1.4 Definition: Let X be a set. A family of subsets of X, which we will refer to more succinctly as a
family of X when we may do so without any contextual ambiguity, is a set A such that each element of
A is a subset of X, that is A C X for all A € A. The power set of X, which we denote as Z(X), is the

family of all subsets of X.

The reader should note it follows by definition that given a set X, #2(4(X)) is the family of families of

subsets of X.

2.1.5 Definition: Let X be a set and A be a family of subsets of X. We denote by:

(i) Uaca A the union of the elements from A; and

(ii) Ngeca A the intersection of the elements from A.

Furthermore let Y be a set, B be a family of subsets of Y and f : A — B be a function. We denote by:
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(i) Uaeca f(A) the union of the elements from A mapped under f; and

(ii) Nea f(A) the intersection of the elements from A mapped under f.

§ 2.1.3 Binary relations

2.1.6 Definition: Let X be a set. A binary relation on X is a subset R of X x X.

2.1.7 Definition: A binary relation R on a set X is said to be:

(i) reflezive if (z,x) € R for all z € X;

(ii) symmetric if (x,y) € R implies (y,z) € R for all z,y € X
(iii) antisymmetric if (x,y) € R implies (y,z) &€ R for all distinct z,y € X;
(iv) transitive if (x,y), (v, z) € R implies (x,z) € R for all z,y,z € X; and

(v) total if (z,y) € Ror (y,z) € R for all x,y € X.

We refer to reflexivity, symmetry, antisymmetry, transitivity and totality as properties of binary relations.

§ 2.1.4 Order relations

2.1.8 Definition: A binary relation R on a set X is referred to as:

(i) a pre-order if it is reflexive and transitive;
(ii) a partial order if it is an antisymmetric pre-order; and
(iii) a total order if it is a total partial order.
2.1.9 Definition: Let X be set partially ordered by < and A be a subset of X. An element a € A is
referred to as:
(i) the greatest element of A if a is greater than or equal to every element of A;
(ii) the least element of A if a is less than or equal to every element of A;
(iii) a minimal element of A if there does not exist an element of A that is greater than a; and

(iv) a mazimal element of A if there does not exist another element of A that is less than a.
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Furthermore an element x € X is referred to as:

(i) an upper bound of A if every element of A is less than or equal to z;
(ii) a lower bound of A if every element of A is greater than or equal to x;
(iii) the least upper bound of A if it is the least element of the upper bounds of A; and

(iv) the greatest lower bound of A if it is the greatest element of the lower bounds of A.

§ 2.1.5 Lattices

2.1.10 Definition: A partial order < on a set X is referred to as a:

(i) join-semilattice if each two-element subset {x, 2’} C X has a greatest lower bound, which is typically

referred to as the join of x and 2/, and denoted as z V 2;

(ii) meet-semilattice if each two-element subset {z, 2’} C X has a least upper bound, which is typically

referred to as the meet of x and x’, and denoted as z A z’; and

(iii) lattice if it is both a join-semilattice and a meet-semilattice.

For example, for each k € Zwg, the subsets of {1,... k} are partially ordered by C, set union gives
us a lattice join operation and set intersection gives us a lattice meet operation. Hence the subsets of

{1,...,k} form a lattice under C.

Let X be a set. The reader should note it follows inductively that:

(i) given a join-semilattice < on a set X, every finite subset A C X has a least upper bound which is

referred to as the join of the elements of A; and

(ii) given a meet-semilattice < on a set X, every finite subset A C X has a greatest lower bound which

is referred to as the meet of the elements of A.

2.1.11 Definition: A property P of binary relations is referred to as closable when for each binary
relation R on a set X, while ordered by C, there exists a least element in the set of binary relations that
contains R and satisfies property P. The least element, when it exists, is typically referred to as either

the P relation generated by R or the P closure of R.



Sec 2.1: Preliminary notation and terminology

For example transitivity is a closable property of binary relations. The transitive closure of a binary

relation R is stated in Proposition 2.1.12.

2.1.12 Proposition: If R is a binary relation on a set X then the transitive closure of R is the
set of all (z,z') € X x X such that there exist aj,...,a, € X satisfying x = aj,2' = a,, and

(al, CLQ), ey (an_l,an) € R.

Proof. See page 337 of [46]. O

Given a closable property of binary relations P:

(i) a lattice-meet operation is defined by taking the P relation generated by the intersection of two

binary relations with property P;

(ii) a lattice-join operation is defined by taking the P relation generated by the union of two binary

relations with property P.

§ 2.1.6 Equivalence relations

2.1.13 Definition: A binary relation R on a set X is referred to as an equivalence relation if it is a

symmetric pre-order.

2.1.14 Definition: Let ~ be an equivalence relation on a set X. The equivalence class of © € X is the
set {y € X : y ~ x}, which we denote as [z]. The set of equivalence classes {[z] : © € X} is denoted by
X /r.

Note that reflexivity, symmetry and transitivity are all preserved under intersections of relations, hence
equivalence relations are also preserved under intersections, which forms a lattice meet operation on

equivalence relations.

However while reflexivity and symmetry are preserved under unions of binary relations, transitivity may
not be, consequently the union of two equivalence relations may not be an equivalence relation. Never-
theless we already noted that transitivity is a closable property of relations, hence giving us Proposition

2.1.15.

2.1.15 Proposition: Let ~; and ~5 be two equivalence relations. The smallest equivalence relation
under set inclusion containing the union ~71 U ~5 is equal to the transitive closure of the union ~1 U ~s.

Furthermore, this operation forms a lattice join operation on equivalence relations. O
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We shall adopt the style of indicating that there will be no explicit proof (as in the case above) by

terminating the statement itself with [J.

§ 2.1.7 The finer and coarser than pre-orders

2.1.16 Definition: Let X be a set and A, B be families of subsets of X. We say that A is finer than B
and that B is coarser than A, which we denote as A < B, if for each A € A there exist B € 5 such that

A C B. We denote the finer than relation as <.

Note that the finer than relation =< is trivially reflexive and transitive, and hence pre-orders families of

subsets.

Post-Note: Clearly trying to think of smaller examples during that stage of writing this doctoral thesis
was not helping with any clarity /sanity, though I typical find such an endeavour quite fruitful and the
above example would clearly break reflexivity not antireflexivity. I imagine it would be a fun endeavour
to both look for a proof of and/or to prove antireflexivity, or a lack thereof, for the finer than and corser

than relations.

§ 2.1.8 Set partitions

2.1.17 Definition: Let X be a set and A be a collection of non-empty subsets of X. We say that X:

(i) is pairwise disjoint if for each A, A’ € A, AN A’ is the empty set;
(ii) covers X, or is a cover of X, if [J,c 4 A is equal to X; and
(iii) partitions X, or is a partition of X, if A is pairwise disjoint and covers X.

2.1.18 Definition: Let k € Z>(. Each partition « of {1,...,k} may be graphically depicted as follows:

(i) for each j € {1,...,k}, the vertex j is depicted as the point (j,0) € R?; and

(ii) lines connecting points in {1,...,k} x {0} are drawn non-linearly below the horizontal line {(z,0) :
x € R} and between the two vertical lines {(1,y), (k,y) : y € R} such that the connected compo-

nents form the blocks of a.

10
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For example, Figure 2.1 illustrates a graphical depiction of the partition {{1,5},{2, 3}, {4}, {6, 7,8}, {9},

{10,11}}.

Figure 2.1: Given k = 11, as outlined in Definition 2.1.18, the partition {{1,5},{2,3}, {4}, {6,7,8},{9},
{10, 11}} may be graphically depicted as:

QSIS RS RN
2.1.19 Definition: The number of partitions of a set X such that | X| = k is referred to as the k-th Bell

number, which we denote as %,.

Note the Bell numbers %, are listed on the OEIS [53] as sequence A000110.

When restricted to set partitions, the finer-than relation is additionally antisymmetric, hence set parti-

tions are partially ordered by the finer-than relation.

2.1.20 Proposition: Let X be a set. If A is a family of subsets of X that covers X then there exists a

finest partition of X that is coarser than A.

Proof. Let ~ be the relation on A where for each A, A" € A, A ~ A’ if there exist k € Z>2 and
Ay,..., A € Asuch that Ay = A, Ay, = A and A, NA; 1 @ forallie {1,...,k—1}. Tt is trivially

the case that ~ is an equivalence relation and hence partitions the elements of A.

Let B ={Uyea A+ A € A}. 1t follows from how we defined ~ that Upcp B = Uye g 4 = X and for
each B, B’ € B, BN B’ = &, hence B partitions X. Furthermore for each A € A, A C UA,E[A] A e B,

hence A is finer than B.

Let C be a partition of X that is coarser than A. Let A, A’ € A such that A ~ A’, therefore there exist
k € Z>a, A1,..., A € A and such that Ay = A, Ay = A" and A;NA;4; #Sforallie{l,....k—1}
It follows from C being coarser than .4 that for each i € {1,...,k}, there exist C; € C such that A; C C;.
Now for each i € {1,...,k — 1}, A; N A;41 # @ implies C; N Ci41 # &, which requires C; = C;41 since
C is a partition. Hence we must have UA,G[A] A’ C C; € C, giving that B is finer than C. It follows from

finer than partially ordering partitions that if C is also finer than A4 then C = A. O

For example the finest partition coarser than {{1,2},{2,3}} is {{1,2,3}}.

Given a set X, the intersection of two partitions of X is also a partition of X, consequently the operation
of taking the intersection of two partitions of X forms a lattice meet operation. The union of two

partitions of X may not be a partition of X. However, the operation of taking the finest partition of

11
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X coarser than the union of two partitions of X, which is well-defined as was established in Proposition

2.1.20, forms a lattice join operation.

2.1.21 Proposition: Let X be a set. With the above operations the set of partitions of X forms a

lattice. O

Furthermore, given an equivalence relation ~ on X, the equivalence classes X/~ form a partition of
X. Distinct equivalence relations form distinct partitions, each partition is formed by an equivalence
relation, and the lattice operations match. Hence the lattice of partitions of X and the lattice of

equivalence relations on X are isomorphic to each other.

2.1.22 Proposition: Let X be a set. The lattice of partitions of X and the lattice of equivalence

relations on X are isomorphic to each other. O

2.1.23 Proposition: If X is a set, A is a partition of X and Y C X then {ANY : A € A} is a partition
of Y. O

2.1.24 Definition: Let X be a set, A be a partition of X and Y C X. We refer to the partition

{ANY : A€ A} as the partition A restricted to Y or the restriction to'Y of the partition A.

2.1.25 Definition: Let k € Z>¢ and m € Z~. A partition a of {1,...,k} is referred to as:

(i) mon-crossing or planar if it may be graphically depicted, as in Definition 2.1.18, without connected

components crossing; and

(ii) m-divisible if for each block b € a, the number of vertices in b is divisible by m, that is |b] € mZ~.

The lattice of non-crossing partitions of {1,..., k}:

(i) was first identified by Kreweras [44];

(ii) is self-dual and admits a symmetric chain decomposition [58], with further structural and enumer-

ative properties of chains in [18]; and

(iii) arise in the context of algebraic and geometric combinatorics, topological problems, questions in

probability theory and mathematical biology [57].

The poset of m-divisible non-crossing partitions of {1,..., k}:

(i) was first considered by Edelman [18]; and
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(m+1)k
(ii) has cardinality (m]: +1) [3, 4], [18], which is the Pfaff-Fuss-Catalan sequence [29, page 347], [62].

Note that a non-crossing partition may always be graphically depicted without individual connected
components crossing, but some graphical depictions of planar partitions may require individual connected

components to cross.

§ 2.1.9 Modular arithmetic

2.1.26 Definition: Given m € Z>( and a,b € Z, it is said that a is congruent to b modulo m, which is
typically denoted as a = b (mod m), if the difference b — a between a and b is equal to a product of an

integer and m, that is b —a € mZ.
2.1.27 Proposition: For each aj,as,b1,by € Z such that a; = b1 (mod m) and as = by (mod m):
(i) a1 + az = by + be (mod m); and
(ii) a; —ag = b1 — b2 (HlOd m)
Proof. Since a; = by (mod m) and as = by (mod m), there exists x,y € Z such that b; — a; = ma and

by — ag = my. It trivially follows that (by +b2) — (a1 +a2) = m(z +y) € mZ and (by — b2) — (a1 —az) =

m(x —y) € mZ. 0

2.1.28 Proposition: For each m € Z~, congruence modulo m is an equivalence relation on integers

with m equivalence classes {mZ + 1,...,mZ + m}.

Proof. Let a,b, ¢ € Z such that a = b (mod m) and b = ¢ (mod m), hence there exists z,y € Z such that

b—a=mx and ¢ — b = my. Now:

(i) a —a =0 € mZ giving reflexivity;
(ii) a — b= m(—z) € mZ giving symmetry; and

(ili) c—a=c—b+b—a=m(y+z) € mZ giving transitivity.
Hence congruence modulo m is an equivalence relation. Furthermore:

(i) the integers congruent to a modulo m are trivially equal to mZ + a; and

13
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(ii) there trivially exists a distinct d € {1,...,m} such that a € mZ + d.

O
2.1.29 Proposition: For each m,n € Z>o and a1,...,a,,b1,...,b, € Z, if a; = b; (mod m) for all
ie{l,...,n} then X ;a; = X ,b; (mod m).
Proof. For each i € {1,...,n}, since a; = b; (mod m) there exists z; € Z such that b; — a; = mz;. It
trivially follows that ¥ ,b; — X7 a; = X7, (b; — a;) = E7_yma; = mE!_ x; € mZ. O

§ 2.1.10 Integer partitions
2.1.30 Definition: For each n € Z~ and p1,...,p, € Z>o:

(i) {p1,-..,pn} is an integer partition of X7 ,p;; and
(ii) (p1,-..,pn) is an ordered integer partition of ¥ 1 p;.
For example the five integer partitions of 4 are {1,1,1,1}, {2,1,1}, {2,2}, {3,1} and {4}, while the eight

ordered integer partitions of 4 are (1,1,1,1), (2,1,1), (1,2,1), (1,1,2), (2,2), (3,1), (1,3), (4).

2.1.31 Definition: For each k € Z~(, we shall denote:

(i) the number of integer partitions of k as p(k);

(ii) the number of integer partitions of k into parts of size less than or equal to m as p(m, k) (see Table

2.1 for example values);
(iii) the number of ordered integer partitions of k as op(k); and

(iv) the number of ordered integer partitions of k into parts of size less than or equal to m as op(m, k)

(see Table 2.2 for example values).

2.1.32 Proposition: For each m,k € Z~:

p(k, k) m >k,
1+pim—-1,k) m=k,

Z;’;‘llp(i, kE—i) m<k;

14
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Table 2.1: Example values for p(m, k).

m k 1 2 3 4 5 6 7 8 9 10
1 11 1 1 1 1 1 1 1 1
2 1 2 2 3 3 4 4 5 5 6
3 1 2 3 4 5 7 8 10 12 14
4 1 2 3 5 6 9 11 15 18 23
5 1 2 3 5 7 10 13 18 23 30
Table 2.2: Example values for op(m, k).
k
12 3 4 5 6 7 8 9 10
m
1 11 1 1 1 1 1 1 1 1
2 1 2 3 5 8 13 21 34 55 §9
3 1 2 4 7 13 24 44 81 149 274
4 1 2 4 8 15 29 56 108 208 401
5 1 2 4 8 16 31 61 120 236 464

(i) p(k) = p(k, k);
(iii) op(k) =1+ S op(i) = 2m@x{0k=1}; and

op(k m <k,
(i) optm. by = 4 7 o

Xmiop(myk—i) m > k.

B 2.2 Semigroups and monoids

In this section we outline a number of elementary definitions and results from the theory of semigroups
and monoids that will pop up at various times throughout this thesis. Vastly more comprehensive

expositions of the fundamentals of semigroups may be found in [9, 10], [34] and [35]

2.2.1 Definition: A set S equipped with an associative binary operation, commonly denoted by (s, s’) —

ss’ for all 5,8’ € S, is typically referred to as a semigroup.

2.2.2 Definition: Given a semigroup S, for each ¢ € S and A, B C S we denote by:

(i) aB the set {ab: b€ B};
(ii) Ab the set {ab:a € A}; and

(iii) AB the set {ab:a € A,b € B}.
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2.2.3 Definition: Let S be a semigroup. A subset T' C S is referred to as a subsemigroup of S if

TT CT. Note that, when convenient to do so, we denote such a relationship as T' < S.

2.2.4 Definition: Given a semigroup S and a subset G C S, the semigroup generated by G, which is
typically denoted by (G), is the smallest subsemigroup of S for which G is a subset, or equivalently the

set of all finite combinations of elements from G under the operation of S.

2.2.5 Definition: A semigroup S is referred to as regular if for each a € S there exists b € S such that

aba = a and bab = b.

2.2.6 Definition: Given a semigroup S, an element e € S is referred to as the identity of S if for each

se€S, se=s=es.

Given a semigroup S with identity element e € S, Proposition 2.2.7 justifies referring to e as the identity

of S rather than as an identity of S.

2.2.7 Proposition: Given a semigroup S, if e,e’ € S are identity elements then e = ¢’.

Proof. e =ee' =¢€'. O

2.2.8 Definition: A semigroup S containing an identity element e € S, that is so that es = s = se for

all s € S, is typically referred to as a monoid.

2.2.9 Definition: Given a semigroup S, S typically denotes:

(i) S when S is already a monoid; and

(if) SU{e} such that se = s = es for all s € S when S is not already a monoid.

2.2.10 Proposition: If S is a semigroup then S! is a monoid. O

2.2.11 Definition: Given a monoid M with identity e € M, a subset N C M is referred to as a

submonoid of M if N is a subsemigroup of M and e € N.

Note it is possible for a monoid M to contain a distinct monoid N that is not a submonoid of M. For
example given a monoid M with identity e, form M U {f} such that fm = m = mf for all m € M, then
M and M U {f} are both monoids, and M is a subsemigroup of M U {f}, while M is not a submonoid
of MU{f}.
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§ 2.2.1 Idempotents

2.2.12 Definition: An idempotent of a semigroup S is an element s € S satisfying s = s.

We denote the idempotents of a semigroup S as E(S).

§ 2.2.2 Ideals

2.2.13 Definition: A subset I C S is referred to as:

(i) a left ideal if I is closed when multiplying on the left by elements of S, that is if ST C I;

(ii) a right ideal if I is closed when multiplying on the right by elements of S, that is if .S C I; and

(iii) an ideal if it is both a left and a right ideal, that is if ST, IS C I.

2.2.14 Proposition: For each a € S:

(i) SaU{a} is a left ideal;
(ii) aS U {a} is a right ideal; and

(iif) SaSUSaUaSU{a} is an ideal.

Proof. For each a € S we have:

(i) S(SauU{a})=5SaU Sa C SaU{a};

(i) (aSU{a})S =a(SS)UaS C SaU{a}; and

(iii) S(SaSUSaUaSU{a})=5SSaSUSSaUSaSUSaC SaSUSaUaSU{a} and
(SaSUSaUaSU{a})S = SaSSUSaSUaSSUaS C SaSUSaUaSU{a}.

2.2.15 Definition: Let S be a semigroup. For each a € S:

(i) Sa U {a} is referred to as the principal left ideal generated by a;
(ii) aS U{a} is referred to as the principal right ideal generated by a; and

(iii) SaSUSaUaSU {a} is referred to as the principal ideal generated by a.
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§ 2.2.3 Regular *-semigroups

2.2.16 Definition: Let S be a semigroup. An involution is a unary operation * : S — S such that * is:

(i) its own inverse, that is (s*)* = s for all s € S; and
(ii) an anti-automorphism, that is (st)* = t*s* for all s,t € S.

2.2.17 Definition: A semigroup S equipped with an involution * : S — S is referred to as a regular

*-semigroup if for each s € S, ss*s = s.

Regular *-semigroups were introduced by Nordahl and Scheiblich [50].

2.2.18 Proposition: If a submonoid 7" of a regular *-semigroup S is closed under the involution *, that

is T* =T, then T is also a regular *-semigroup.

Proof. Tt trivially follows by definition that:

(i) for each a € T we have a* € T, a** = a and aa*a = a; and

(ii) for each a,b € T we have a*,b*,b*a* € T and (ab)* = b*a*.

O

2.2.19 Definition: Let S be a regular *-semigroup. An element p € S is referred to as a projection if

it satisfies p? = p = p*.

Note that all projections are idempotents, which trivially follows from the condition for a projection

containing the condition for idempotency.

2.2.20 Proposition: Let S be a regular *-semigroup. The projections, and more inclusively the idem-

potents, of S are partially ordered by p < ¢ if and only if pg = p = gp for all p,q € S.

Proof. Clearly < is reflexive and antisymmetric leaving transitivity. Let p,q,r € S such that p < g < r.

Then pr = (pg)r = p(qr) =pqg=p = qp = rqp = rp. O

2.2.21 Proposition: Given a regular *-semigroup S:

(i) for each s € S, ss* and s*s are projections;
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(ii) every projection can be written as ss* and s*s for some s € S,
(iii) the set of idempotents E(S) is closed under involution; and
(iv) every idempotent is the product of two projections.
Proof. (i) For each s € S, (ss*)(ss*) = (ss%s)s* = ss* = (s%)*s* = (ss*)*, similarly (s*s)(s*s) =
s*s = (s*8)%;
(ii) For each p € S such that p? = p = p*, p = p* = pp* = p*p;
(iii) For each idempotent e € E(S5), e*e* = (ee)* = €*, hence e¢* € E(S); and

(iv) For each idempotent e € E(S), (ee*)*(e*e) = ee*e*e = ee*e = e.

§ 2.2.4 Green’s relations

Green’s relations, introduced by James Alexander Green in [30], are five equivalence relations that

partition the elements of a semigroup with respect to the principal ideals that may be generated.
2.2.22 Definition: Given a semigroup S, for each a,b € S:

(i) (a,b) €<g if and only if aS U {a} C bS U {b}; and

(ii) (a,b) €< if and only if Sa U {a} C SbU {b}.

2.2.23 Proposition: <i and <, are pre-orders on S.

Proof. Reflexivity is obvious and transitivity follows from C being transitive on sets. O
2.2.24 Definition: Given a semigroup S, Green’s relations on S are defined as follows:
(i) R=<r N<z'={(a,d) € Sx S:aSU{a} =bSU{b}};
(i) £L=<,n<;'={(a,b) € Sx S:Sau{a} =5bU{b}};
(i) H = LNR;

(iv) D ={(a,b) € S x S : there exists ¢ € S such that alc and ¢Rb}; and
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(v) T ={(a,b) € S x S:SaSU{a} = SbSU{b}}.

2.2.25 Proposition: Given a semigroup S,

(i) Green’s R, L, H, D and J relations are equivalence relations;
(ii) D=RoL=LoR=RVL; and
(iii) if S is finite then Green’s D and J relations are equal. O
2.2.26 Proposition: Let T be a subsemigroup of a semigroup S. If T is regular then Green’s R”,
LT and HT relations on T are equal to the restrictions to T of Green’s R, £5 and H° relations on S
respectively, that is:
(i) RT = RSN (T x T);
(ii) £T = £5N (T x T); and

(iil) HT = HIN (T x T).

Proof. Proposition 2.4.2 in [35] (also in [32]). O

§ 2.2.5 Green’s relations on regular *-semigroups

2.2.27 Proposition: Given a regular *-semigroup S, for each a,b € S:

(i) (a,b) €<g if and only if aa* < bb*;
(ii) (a,b) €<, if and only if a*a < b*b;
(iii) (a,b) € R if and only if aa* = bb*;

(iv) (a,b) € L if and only if a*a = b*b; and

(v) (a,b) € D if and only if there exists ¢ € S such that a*a = ¢*c and cc* = bb*.

Proof. Suppose (a,b) €<g, and hence that there exist s € S! such that as = b. Then aa*(b)b* =
(aa*a)sb* = (as)b* = bb* = b(s*a*) = bs*(a*aa*) = b(b*)aa*, giving us aa* < bb*. Conversely suppose
aa* < bb*. Then a(a*bb*d) = (aa*bb*)b = bb*b = b, hence (a,b) €<g, establishing Part (i). Part (ii)
follows dually to Part (i). Parts (iii), (iv) and (v) follow from applying Parts (i) and (ii) to how Green’s
R, L and D relations are defined. O
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2.2.28 Proposition: Given a regular *-semigroup S:

(i) each R class contains precisely one projection; and

(ii) each L class contains precisely one projection.

Proof. Let a,b € S and suppose (aa*,bb*) € R, and hence that (aa*)(aa*)* = (bb*)(bb*)*. Then

aa* = aa*aa* = bb*bb* = bb*, establishing Part (i). Part (ii) follows dually to Part (i). O

§ 2.2.6 Congruence relations

2.2.29 Definition: Given a semigroup S, a congruence relation is an equivalence relation ~ C § x §
that is compatible with the operation for S. The equivalence classes of a congruence relation are often

also referred to as congruence classes.

The congruence classes of a congruence relation form a monoid where for each s, s’ € S, the congruence
class containing s multiplied by the congruence class containing s’ is equal to the congruence class

containing ss’, that is [s][s'] = [ss'].

Note that congruence relations are closed under intersections, hence given a relation R on a semigroup
S, the intersection of all congruence relations containing R is itself a congruence relation, and hence is

the smallest congruence relation containing R.

2.2.30 Definition: Given n € Z~( binary relations Rq, ..., R, on a semigroup S, the congruence relation
generated by Rq, ..., Ry, which we denote by (R, ... ,Rn>T, is the intersection of all congruence relations

that contain Uj_;R;.

§ 2.2.7 Free semigroups and free monoids

2.2.31 Definition: Given a set X:

(i) the free semigroup of X, which is often denoted by X, is the set of non-zero finite strings from X

together with string concatenation, that is X+ = {II_ ,z; : n € Zso and z1,...,2, € S}; and

(ii) the free monoid of X, which is often denoted by X*, adjoins the empty string, which acts as the

identity under string concatenation, to the free semigroup X .
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§ 2.2.8 Presentations

2.2.32 Definition: A presentation of a semigroup S consists of:

(i) a set of generators ¥; and

(ii) a set of binary relations {R1,..., R} on the free semigroup X% generated by ¥,

such that § = X/ (Ry,..., Ru)'.

Perhaps more descriptively, given a semigroup .S, a generating set ¥ of S along with n € Z- binary
relations R, .., R, form a presentation of S when any two words in the free semigroup X+ whose
products form the same element of S are able to be shown as equivalent in an abstract manner using the

binary relations R, ..., Ry.

B 2.3 Fundamentals of diagram semigroups

There are fewer times more appropriate than a doctoral thesis to give a complete coverage of the foun-

dations for diagram semigroups, consequently the author has taken the opportunity to do just that.

§ 2.3.1 Diagrams ®;

2.3.1 Definition: Let k € Z>¢. A k-diagram is a reflexive and symmetric binary relation on {1,...,k}U
{1’,...,Kk'}. We denote by ®;, the set of all k-diagrams, and will refer to k-diagrams more succinctly as

diagrams either when k may be any positive integer or when the value of k is contextually unambiguous.

2.3.2 Definition: Let k € Z>q and § € ®;,. We refer to:

(i) elements of {1,...,k} as upper vertices;
(ii) elements of {1’,... k'} as lower vertices; and

(iii) elements of 0 as edges or lines.

Note provided k € Z>( is contextually unambiguous, we may specify a diagram using an edge set that

is neither reflexive nor symmetric with the implicit understanding that we are actually referring to the
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reflexive and symmetric closure. For example given k = 2, if a diagram is specified as {(1,2), (2,2)}, we
will implicitly mean the diagram {(1,1), (2,2),(1,1"),(2/,2"),(1,2),(2,1),(2,2'), (2,2)} € 5.
2.3.3 Definition: Let k € Z>(. Each diagram ¢ € ®y, is typically depicted as follows (see Figure 2.2 for

an example):
(i) for each j € {1,...,k}, the upper vertex j is depicted as the point (j, 1) while the lower vertex j’
is depicted as the point (j,0); and
(ii) ¢’s lines are drawn within the convex hull of the points {1,...,k} x {0,1}.

Figure 2.2: {(2,1'),(3,4),(4,7),(7,7),(7,8),(5,6), (8,6"), (6',5"),(2',3),(3',4")} € ®s may be depicted, as
outlined in Definition 2.3.3, as follows:

1 2 3 4 5 6 7 8
/ AT
1/ 2/ 3/ 4/ 5/ 6/ 7/ 8/

Note that vertex labels are trivially recoverable without their inclusion, consequently vertex labels are

omitted from all figures proceeding Figure 2.2.

We will adopt the convention that lines between two upper vertices along with lines between two lower
vertices will be non-linear, and that lines between an upper vertex and a lower vertex will be, inclusive

of vertical sections, piecewise linear.

§ 2.3.2 Diagram equivalence ~gx

Let k € Z>p and § € ®;. If we take the transitive closure of § we get an equivalence relation on

{1,...,k}U{l,... k'}, the equivalence classes of which form a partition of {1,...,k} U{l’,... k'}.

2.3.4 Definition: Let k € Z>¢. The connected components of a k-diagram ¢ € ®;, are the equivalence

classes of the transitive closure of d.

For example the connected components of the diagram depicted in Figure 2.2 are:

{{1},{2,1'},{3,4,7,7,8'},{5,6},{8,5",6"},{2/,3,4'} }.

Given k € Z>o, the connected components of each k-diagram form a partition of {1,...,k}U{1’,... k'}.
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Note however that there exist distinct diagrams whose connected components form precisely the same
partition of {1,...,k} U{1’,...,k'}. For example Figure 2.3 depicts two diagrams whose connected

components form the same partition.

Figure 2.3: Given k = 6, the diagrams § = {(1,2),(2,3),(3,4), (4,5),(4,4"),(3',4),(4",5")}, &' = {(1,2),
(1,4),(3,4),(5,4"),(5,5"), (6,6"),(5',6")} € Ds are depicted below.

-

While 4 and ¢’ do not contain the same edges, the connected components of both § and ¢’ are
{{1,2,3,4},{5,6,4',5',6'},{1’,2/,3'}} which is a partition of {1,...,6} U{1’,...,6'}.

2.3.5 Definition: Let k € Z>o. We say that two diagrams §,¢" € ®y, are equivalent if they have the
same connected components. Furthermore we denote by ~g the binary relation that relates equivalent

diagrams.

For example the two diagrams depicted in Figure 2.3 are equivalent. Note that ~g is trivially an

equivalence relation on k-diagrams.

§ 2.3.3 Bipartitions

2.3.6 Definition: Let k € Z>q. A k-bipartition is a set partition of {1,...,k}U{1’,...,k’}. We denote
by Pj the set of all k-bipartitions, and will refer to k-bipartitions more succinctly as bipartitions either
when k may be any positive integer or when the value of k is contextually unambiguous. Furthermore

we refer to elements of bipartitions as blocks.

Typically Py is treated as the singleton set containing the empty bipartition.

2.3.7 Definition: For each k € Z>¢ and a € Py, we denote by ®, the distinct equivalence class of

diagrams in ®;,/ ~% such that for each § € ®,, the connected components of d are the bipartition a.

To depict the bipartition a € Py we select any diagram § € ®,,, and treat blocks of bipartitions as being

synonymous with connected components of diagrams.

No consistent convention has been followed by the author for which diagram will be selected to depict
a given bipartition, though the author has attempted to select diagrams that are aesthetically pleasing

whilst ensuring a visible distance between distinct connected components.
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§ 2.3.4 Block types

It is often convenient to establish and use various bits of notation and terminology for blocks of bipar-
titions. Terminology tends to differ between authors, though definitions are typically either identical or

equivalent.

2.3.8 Definition: For each k € Z>g, a € P;, and b € o, we denote by:

(i) U (b) the subset of upper vertices contained in b, that is bN{1,...,k};

(ii) wu(b) the number of upper vertices contained in b, that is |U (b)|;
(iii) L (b) the subset of lower vertices contained in b, that is bN {1’,...,k’'}; and
(iv) 1(b) the number of lower vertices contained in b, that is |L (b)].

2.3.9 Definition: Given a bipartition a € Py, the type of a block b € « is the pair (u(b),1(b)), where
u(b),1(b) € {0,...,k} such that u(b) + 1(b) > 0 are the number of upper vertices and number of lower

vertices in block b respectively.

It will be convenient for us to use some further terminology for blocks.

2.3.10 Definition: Given m,n € Z~( we refer to:

(i) a block of type (m,n) as a transversal;
(ii) a block of type (1,1) as a transversal line;
(iii) a block of type (m,m) as uniform;
(iv) a transversal line {4,7'} where i € {1,...,k} as a vertical line;
(v) a block of type (m,0) or (0,m) as a non-transversal;
(vi) a block of type (2,0) or (0,2) as a non-transversal line;
(vii) a block of type (1,1), (2,0) or (0,2) as a line;
(viii) a non-transversal containing m consecutive vertices as an m-apsis;
(ix) l-apses as monapses, 2-apses as diapses and 3-apses as triapses; and

(x) atransversal of type (2, 2) containing the same two adjacent upper and lower vertices as a (2, 2)-transapsis.
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§ 2.3.5 Product graphs F((Sl, o ,5p)

2.3.11 Definition: For each k € Z>¢, p € Z+¢ and 61,...,0, € Dy:

(i) by d; we denote the reflexive and symmetric relation on {1,...,k} U {12,... k?} where for each

j€{1,...,k}, every instance of the lower vertex j’ in &; has been relabelled to j2 in 6y;

(ii) by 6, we denote the reflexive and symmetric relation on {17,...,kP} U {1’,... k'} where for each

j€{1,...,k}, every instance of the upper vertex j in ¢, has been relabelled to 57 in Sp; and

(iii) for each i € {2,...,p — 1}, by d; we denote the reflexive and symmetric relation on {1%,...,k%} U
{1+ k") where for each j € {1,...,k}, every instance of the upper vertex j in §; has been
relabelled to j* in §; and every instance of the lower vertex j' in ¢; has been relabelled to j**! in

0.

The product graph of d1,...,8, is the union (J_; d;, which is a reflexive and symmetric relation on

{1, kY U{l, KU (U {1%, ... k'}) that is often denoted as T'(dy,...,d,).

For each k£ € Z>o and § € By, it trivially follows by definition that F(&) = ¢, consequently we will

implicitly interchange between the two whenever it is convenient to do so.
2.3.12 Definition: For each k € Z>¢, p € Z> and 01, ...,0, € ®y, the product graph F(51, e ,5p) is

typically depicted by vertically stacking d1,...,d, such that for each j € {1,...,p}, J; is depicted as the

j-th upper most diagram. Being more precise (see Figure 2.4 for an example):

(i) for each j € {1,...,k}, the upper vertex j is depicted as the point (j,p), the lower vertex j’ is

1

depicted as the point (4,0), and for each i € {2,...,p}, the vertex j°~! is depicted as the point

(.]77’ - 1)7 and

(ii) for eachi € {1,...,p}, each of 0;’s edges are drawn within the convex hull of the points {1,...,k} x

{p—i,p—i+1}.

We will often label the vertical layers of a product graph by whichever is more convenient out of the

associated diagram or the underlying bipartition for each layer.

2.3.13 Definition: For each k € Z>q, p,q € Z»o and 61,...,0p,71,...,0 € By, the product graph
of 1—‘(51, cee (5p) and 1"(171, e ,nq), which we denote by 1—‘(1—‘((51, cee 61,),1"(771, . 77(1))7 is formed by
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Figure 2.4: Let k = 5, 6o = {(1,1),(2,2),(3,4),(5,3),(6,4),(7,9),(8,9),(5,8),(6',7)} € D5 and 55 =
{(1,4),(1,1),(1,2),(2,3), (5,6'), (3',6'),(6,7),(8,9), (8,7), (4,5, (8,9")} € ®s. The product graph I'(da; ),
as outlined in Definition 2.3.12, is depicted as:

vertically stacking F(&l,...,ép) above F(m, . ,nq) in an analogous way to how product graphs of

diagrams are formed.

2.3.14 Proposition: For each k € Z>¢, p,q € Z~¢ and 61, ...,0p,11,...,7q € Dy,

1"(1"(51,...,5p),F(7717...777q)) = 1"((51,...,5]0,171,...777(1).

Proof. Vertically stacking d1,...,0p,m1,...,7q is trivially equivalent to vertically stacking the vertical

stack of d1,...,0, with the vertical stack of n1,...,nq. O

2.3.15 Corollary: Forming product graphs of product graphs is associative.
Proof. For each k € Z>q, p,q,7 € Z>o and d1,...,6p,M1,.-.,Ng, &1, -, & € Dy,

P(F(F((Sla~"7§p)ar(7717'~~777q))7]-—‘(§17~"7€7")) = F(F((Slw'~751077717"'777q)7r(£17~'~aé-r))

(617"'56])77]1’"'777(]7517"'757‘)

= F(F(§17"'16p)7r(n17"'777117517"'76)"))
(

=T(T(51,-..,8,), T(C(n1,- -, 7m), T (&1, -, &)

O

2.3.16 Definition: Let k € Z>o, p,q € Z~o and 41,...,6p,M,...,1y € ®;. We say that the two
product graphs F(él, .. .,6,,) and F(m, e ,nq) are equivalent, which we denote by F(él, . ,5p) ~5
1"(771, ... ,nq), if their connected components restricted to {1,...,k} U {1’,...,k’} are equal, with the

implicit understanding that we forget about any then-empty components following our restriction.
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2.3.17 Proposition: For each k € Z>o, p,q,7,5 € Z>p and 01,...,0p, N1, .-, Mg, §15- -1 &ry W1, -0, Ws
€ By, if:

() T(01,---,0,) ~z T (-, mg); and

(11) F(fl,...7fr) ~B F(wl,...,ws),
then 1"((51,...76,,,51,...,@) ~3 F(m,...,nq,wl,...,ws).

Proof. First note that

F(él,...,ép,fl,...,fr) = I‘(I‘(él,...,ép),I’(&,...,@)); and

F(m,...,nq,wl,...,ws) = F(F(nl,...,nq),F(wl,...,ws)).

For each j € {1,...,k}, we relabel the vertex j7*! to j” in the (p+1)-th vertex row of the product graph

L(01,...,0p,&,...,& ), and relabel the vertex j7™' to j” in the (r + 1)-th vertex row of the product

graph F(m,...,nq,wl,...,ws).

Let i,j € {1,...,k} U{l’,...,k’'} such that there exists a path p; ; from i to j in the product graph
F(&l,...,ép,&,...,ér). Let t € Z>5 such that the minimum number of times p;; crosses between
I'(61,...,6,) and T'(&,...,&) is t — 2. Therefore there exists t vertices vy,...,v; € {1,...,k} U
{17,.. K"} U {l',...,k'} and paths py, vys---,Pv,_, v, such that v; = 4, v, = j and for each | €
{1,...,t = 1}, Duy,v,, is a path from v; to vy41 that is either a subset of I‘(51, .. .,5p) or a subset of
T(&,....&).

For each | € {1,...,t — 1}, it follows from F((Sl, e ,(5p) ~3 F(nl, e ,nq) and F(fl, e ,fT) ~5
F(wl,...,ws) that there exists a path from v; to v;41, which we denote as p;hvl“, that is either a
subset of F(m, e ,nq) or a subset of F(wl, . ,ws) depending on whether F((Sl, e ,(5p) or I’(gl, e ,§T)

contains the path p,,

Vit1-

Finally Uf;ll p{,wl“ forms a path from i to j and for each I € {1,...,t -1}, p;hvlﬂ is either a subset of

F(m, ey nq) or a subset of I‘(wl, . ,ws). Hence ¢ and j, which share the same connected component
of F(él, N ST ,fr), also share the same connected component of F(m, g W ,ws).
The same argument in the opposite direction establishes that for any two vertices 4,5 € {1,...,k} U

{1’,..., K’} that share the same connected component of the product graph I'(ny, ... ,7g, w1, ..., ws), i and
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7 also share the same connected component ofF((Sl, ey 0p, 8, ,fr). Hence F((Sl, o 0p, &0, ,fT) ~

F(nl,...,nq,wh...,ws). O

§ 2.3.6 The partition monoid P

The partition monoid consists of all bipartitions equipped with an associative binary operation, we
review two equivalent approaches at defining this operation. The first approach forms the product of
two bipartitions using the product graph of representative diagrams, admitting a rather intuitive way
to depict products of bipartitions in the process. The second approach multiplies bipartitions directly.
Since both products are equivalent, which we will later establish, we will only make a distinction between

the two when it is relevant to do so.

2.3.18 Definition: Let k € Z>o and «, 8 € Py. The product of o and 3, denoted as af3, is formed as

follows:

(i) Let 04 € ®, and 5 € Dg;

(ii) two vertices ¢,7 € {1,...,k}U{1’,..., k’} share the same block in the product o3 if they share the
same connected component of the product graph I‘((Sa, 55), that is the blocks of the product o are
the connected components of I' (84, 83) restricted to {1,...,k} U{l’,... K’} with any then-empty

connected components implicitly removed.

For example consider d,,dg € ®g from Figure 2.4 where the product graph I‘(éa, (55) is depicted. It is eas-
ily verified that the underlying bipartition of 8, is « = {{1,1'},{2, 2}, {3,4},{5,3'},{6,4'},{7,9'}, {8, 9},
{5,8'},{7,8'}} € Ps and that the underlying bipartition of dz is 8 = {{1,4,1',2'},{2,3},{5,3,6'},
{6,7},{8,9,7'},{4,5'},{8,9'}} € Ps, that is 0, € ®, and dg € Dg. Hence two verticesi,j € {1,...,k}U
{1’,...,k'} share the same block in af if there is a path from 7 to j in the product graph I‘(éa, 55) that is
depicted in Figure 2.4. Giving us a8 = {{1,6,1’,2'},{2,5},{3,4},{7,3,6',7'},{8,9},{4',5'},{8,9'}} €
Ps.

Note that in order for the bipartition product to be well-defined, the choice of representative diagrams

from ®, and ®g must be arbitrary, which is conveniently a restricted case of Proposition 2.3.17.

2.3.19 Corollary: For each k € Z>o, a, 8 € Py, 6a, 0y, € Dy and 6,5 € Dg, I'(0a,03) ~p F(é;,é’ﬁ).

Proof. A restricted case of Proposition 2.3.17. O
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2.3.20 Proposition: For each k € Z>o and «, 8,7 € Py, (af)y = a(B7).

Proof. Let 6o € ®q, 63 € ®g, dog € Dop and §, € ®,. Note that the connected components of d,p
and the connected components of F(§a,55) restricted to {1,...,k} U{l’,... k'} are the blocks of af,
and hence that the connected components of .5 are equal to the connected components of F(5a,5g)

restricted to {1,...,k}U{1’,... k'}, hence dqp ~z F(§a,55).

Note it follows from Proposition 2.3.17 that the connected components of F((Sag, 67) and the connected
components of 1"(1"((50‘,(55),67) = F(éa,ég,&,) are equal. Hence the blocks of (af8)y are equal to the

connected components of I‘(éa, R 67) restricted to {1,...,k}U{l’,... k'}.

By an analogous argument the blocks of a(37) are also equal to the connected components of F(5(,, g, 57)

restricted to {1,...,k} U{l’,... k'}, giving us (aB)y = a(B7). O

2.3.21 Definition: For each k € Z~(, we denote by id; the bipartition {{j, it ed{l,.. .,k}} € Px

(see Figure 2.5 for a depiction of idy).

Figure 2.5: Given k =4,

idg = € Py

Note idy trivially acts as both a left and right identity, and hence is the identity of the bipartition
product.
2.3.22 Definition: Given k € Zx, the partition monoid, which is often also denoted as P, for conve-

nience, consists of all k-bipartitions Py along with the bipartition product.

2.3.23 Corollary: For each k € Z>o, p € Z>2 a1,...,q, € Py and 6o, € By, where j € {1,...,p}, the

blocks of @ ...a, are the connected components of F(éal, cee 6%).

Proof. Follows inductively on p in an analogous way to the proof of Proposition 2.3.20, where we estab-

lished that the bipartition product is associative. O
Let p € Z>9 and a, ..., o, € P,. When depicting the formation of the product o ... o, we will equate
the product graph I'(ai,...,q,) to any representative diagram 0 € B, .. .q,, with the implicit under-

standing that we really mean the connected components on the product graph I'(aq, ..., a,) restricted
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to {1,...,k}U{l’,... K’} are equal to the connected components of the diagram depicting the product

aj...0p.

Next we review how the product of two bipartitions may equivalently be formed directly without using

representative diagrams.

2.3.24 Proposition: For each k € Z>( and «, € By, af is the finest partition coarser than oy U "

where:

(i) ay denotes the partition of {1,...,k} U{1”,... K"} such that for each j € {1,...,k}, the lower

vertex j’ in a has been relabelled to 7" in ay/; and
(ii) 8" denotes the partition of {1”,... K"} U {1’,... k'} where for each j € {1,...,k}, the upper

vertex j in 8 has been relabelled to j” in /7.

Proof. Let 0, € ®, and 63 € ®g. The product graph I’(éa,é,@) is formed in an equivalent way to how
oy U B” is formed, and the transitive closure of F(éa, 65) is the finest equivalence relation containing

F(&a, (5ﬁ). Hence the associated partition must be the finest partition coarser than a,, U 8. O

For example, consider o = {{1,5,4',5'},{2,3,4},{1'},{2/,3'}}, B = {{1,4,5,1',2/,3'},{2,3},{4',5'}} €
Ps. The formation of the product af as outlined in Definition 2.3.18 is depicted in Figure 2.6, alterna-

tively it may be computed as follows:
(i) ay =4{1,5,4",5"},{2,3,4},{1"},{2",3"} };
(ll) 5/\ — {{1//74/1,5//’ 1/72/731}’ {2//73//}7{4/75/}};
(iii) {{1,5,1”,4”,5",1',2',3'},{2,3,4},{2",3"},{4’,5'}} is the finest partition coarser than ay, U 8";

(iv) {{1,5,1',2/,3'},{2,3,4},{},{4,5'}} are the blocks of the finest partition coarser than a, U 8"

restricted to {1,...,k} U{l’,... k’'}; and

(v) {{1,5,1",2",3'},{2,3,4},{4',5'}} are the non-empty blocks of the finest partition coarser than
ay U B restricted to {1,...,k} U{l’,...,k'}, which is the bipartition a3 and depicted in Figure

2.6.

Figure 2.7 depicts the formation of a more intricate product of bipartitions than we have considered up

to now, which we proceed to discuss. Notice that when forming the product af:
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Figure 2.6: Given k =5 and o = {{1,5,4',5'},{2,3,4}, {1}, {2/,3'}}, B = {{1,4,5,1",2",3'},{2,3},{4',5'}} €
Ps,

N

¢
B
N
I
29
o
O

(i) the upper non-transversal blocks of o and lower non-transversal blocks of 3 are preserved;

i1) the upper 2-apsis bloc , € [ joins to the transversal lines {4,5"}, {5, € «, forming the
ii) th 2 is block {5,6 B joi h 1 1i 4,5 5,6 f i h

upper non-transversal {4,5} € af3;
(iii) the lower 3-apsis block {1’,2',3'} € a and upper 3-apsis block {1,2,3} € § cap each other off;

(iv) the lower non-transversals {9',10'}, {11’} € a and upper non-transversals {9}, {10,11} € 8 cap

each other off;

(v) the transversal lines {3,4'},{7,7'} € a join to the transversal {4,7,3'} € 3, forming the transversal

{3,7,3'} € af; and

(vi) the blocks {8,13'},{8,12'} € « join to the transversal blocks {8,4’,7',8'}, {12,11’} € 3, forming
the transversal block {8,4’, 7,8 11’} € af.

§ 2.3.7 Horizontal sum & : Py, X Pr, = Pry 1k,

2.3.25 Definition: For each ki,ks € Z>o, o € Py, and 8 € Py,, the horizontal sum of a and /3, which

we denote as a @ 3, is formed as follows:

(i) let B> denote the partition of {k1 + 1,..., k1 + ka} U {(k1 +1)',..., (k1 + k2)'} where for each
j€{1,...,ka}, the upper vertex j in § has been relabelled to k; + j and the lower vertex j’ in 3
has been relabelled to (k1 + )" in %; and

(ii) the horizontal sum « @ S is the union o U 8% € P, 4k, -
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Figure 2.7: Given o = {{1,2}, {3,4'},{4,5'},{5,6'}, {6}, {7, 7'}, {8,13'},{9,10, 11,12, 13}, {1/, 2/, 3'}, {8', 12},
{9’,10/},{11/}}, B = {{1,2,3},{4, 7,3'},{5,6},{8,4',7,8'},{9},{10,11},{12,13,11'}, {1, 2'}, {5, 6"}, {9, 10'},

{12’,13’}} € Pis,
!’ ° L2222
€ % 3 IR
B
¢ ¢ ¢ ¢
[

N e L2 2!
af
« ¢« o ¢« o ¢« .

The horizontal sum of diagrams is defined analogously as follows.

2.3.26 Definition: For each k;, ks € Z>p, § € g, and 1 € ®y,, the horizontal sum of § and n, which

we denote as d @ 7, is formed as follows:
(i) let > denote the translation of  where for each j € {1,...,k2}, the upper vertex j in 1 has been
relabelled to k1 + j and the lower vertex ;' in 1 has been relabelled to (k1 + j)" in ™ ; and
(ii) the horizontal sum § @ 7 is the union § Un> € By, 4k,
For each ki,ks € Z>o, a € Py, and B € Py,, it trivially follows by definition that D, & Dg = Dagg-
Hence if we select representative diagrams d, € ®, and d3 € g, we may depict a @ 3 by d, & 63

without having to explicitly determine o @ 3 directly to either verify that d, © dg € Dagp or to select a

representative diagram from ®,q 4.

Figure 2.8 depicts the horizontal sum of o = {{1,2},{3,6,5,6'},{4,5}, {1',4'},{2',3'}} € Ps and
8 =1{{1,2,3,3,4'},{4,8,5},{1',2'},{6', 7,8 }}.

Note that the horizontal sum operation @ is trivially associative.

§ 2.3.8 Vertical flip involution * : P, — Py

2.3.27 Definition: For each k € Z>o and o € Py, the vertical flip of o, which is typically denoted as

a*, is formed by for each j € {1,...,k}, switching the labels of j and j' in a.
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Figure 2.8: Given k1 =6, ky = 8§,

A
a= € Pg and
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B = € Ps,

¢« o « ¥

Oé@ﬁ: € P1a.
ey F SV

The vertical flip of a diagram is defined analogously as follows.

2.3.28 Definition: For each k € Z>q and § € ®y, the vertical flip of §, which is typically denoted as §*,
is formed by for each j € {1,...,k}, switching the labels of j and j' in §, or when depicted by vertically

flipping §.

For each k € Z> and o € Py, it trivially follows by definition that ®;, = ®,-. Hence if we select a
representative diagram J, € ®,, we may depict a* by depicting 4, which is easy to do without having
to explicitly determine a* directly to either verify that 6} € ®,~ or to select a representative diagram

from D, .

Figure 2.9 depicts the vertical flip of the bipartition a = {{1,2},{3,6,5,6'}, {4,5},{1",4'},{2/,3'}} € Ps.

Figure 2.9: Given k = 6 and

NP A

o = 6736,

S

o = € Ps

¢ o & &

2.3.29 Proposition: For each k € Z>(, the partition monoid Py is a regular *-semigroup. That is for

each «, B € Py:

(i) o™ =q
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(ii) (af)* = B*a*; and

(ili) aa*a = a (see Figure 2.10 for an example).
Note that conditions (i) and (ii) give that * is an involution.
Proof. Switching the upper and lower labels twice is trivially the same as never switching them to begin

with, hence a** = a.

Let 0o € ®, and dg € ®g. It is trivially the case that flipping the product graph of §, and dg is
equivalent to forming the product graph of dg flipped and d, flipped, that is F(Ja,ég)* = F( 5 j;),
hence (af)* = f*a*.

Finally, when forming the product aa*a:

(i) each upper non-transversal block in the left-most « is preserved;
(ii) each lower non-transversal block in the right-most « is preserved;

(iii) each lower non-transversal block in the left-most « and the corresponding upper non-transversal
block in a* join and are removed, similarly with each upper non-transversal block in the right-most

a and the corresponding lower non-transversal block in a*; and
(iv) each transversal block in the left-most « joins with the corresponding transversal block in a*, which
then joins back up with the corresponding transversal block in .
Hence aa*a = a. O

2.3.30 Corollary: If a submonoid S of the partition monoid P is closed under the vertical flip involution

*, that is S* = 5, then S is also a regular *-semigroup.

§ 2.3.9 Patterns

Patterns encode information about the non-transversal and transversal blocks for the upper or lower half
of a bipartition. Note that while definitions are typically consistent between authors, terminology and
notation frequently differs.

2.3.31 Definition: Let k € Z>o. A k-pattern is a pair (A, B) where A and B are families of subsets of

{1,...,k}, that is A, B C Z({1,...,k}), such that:
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Figure 2.10: Given k = 6 and a = {{1,2,3},{4,7,3'},{5,6}, {8,4',7,8'}, {9}, {10, 11}, {12, 13, 11"}, {1",2'},
{5',6'},{9',10'},{12',13'}} € P13, as established in Proposition 2.3.29,

L’ ! T T
i@j@@@ O
VSS L. O
am Sy 63 d i
L’ U” A 4
am/\f\/v ¢ ¢

(i) A and B are pairwise disjoint; and

(ii) the union of A and B is a partition of {1,...,k}.

We denote by U(Py) the set of all k-patterns, and will refer to k-patterns more succinctly as patterns
either when k may be any positive integer or when the value of k is contextually unambiguous. Given
a pattern (A,B) € U(Py), we refer to elements of A as non-transversal blocks and elements of B as

transversal blocks.

Let k € Z>o and (A, B) be a pattern. The reader should note that requiring A and B be pairwise disjoint
does not exclude the possibility of there existing A € A and B € B such that AN B is non-empty, however
the additional requirement that the union 4 U B partition {1,...,k} does, that is for each A € A and
B € B, AN B is the empty set. Similarly, requiring that the union AU B be a partition of {1, ...k} does
not exclude the possibility of there existing A € A and B € B such that A = B, however the additional

requirement that 4 and B be pairwise disjoint does.

We may depict patterns in a similar way to how we use diagrams to depict bipartitions.

2.3.32 Definition: Let k € Z>o. Each pattern (A, B) € U(Py) may be depicted as follows:
(i) for each j € {1,...,k}, the vertex j is depicted as the point (j,0);

(ii) lines connecting points in {1,...,k} x {0} are drawn non-linearly either all above or all below the

horizontal line {(z,0) : z € R} and between the two vertical lines {(1,y), (k,y) : y € R} such that
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the connected components form the blocks of AU B; and

(iii) so that blocks of A may be distinguished from blocks of B, which is needed for every pattern to be
uniquely recoverable from some depictions, for each block B € B, a vertical line is drawn downwards
from one of the vertices in B. Note some authors alternatively use a two-tonne colouring of the

vertices to indicate whether each vertex is contained in a non-transversal or transversal block.

For example, Figure 2.11 contains a depiction of the pattern ({{2, 3}, {4}, {6, 7,8}}, {{1,5}, {9}, {10,11}})
c U(Pll)

Figure 2.11: Given k = 11, as outlined in Definition 2.3.32, the pattern ({{2,3},{4},{6,7,8}},{{1,5},{9},
{10,11}}) € U(P11) may be depicted as:

2

Similar to how distinct diagrams may depict the same bipartition, it is possible for distinct depictions to

depict the same pattern. However we need not go in to as much detail with depictions of patterns since:

(i) the details for depicting patterns follow in an analogous fashion to depicting bipartitions using

diagrams; and

(ii) the same amount of detail for depicting patterns will not be needed in our later discussions.

Typically two patterns, a lower and an upper, are associated with each bipartition, which may be outlined

as follows.

2.3.33 Definition: For each k € Z>( and a € Pj;, we denote by:

(i) UN(a) the set of all upper non-transversal blocks in «, that is UN(a) = {b € a : u(b) >

0 and I(b) = 0};

(ii) LN («) the set of all upper non-transversal blocks in «*, that is LN(a) = UN(a*) = {b € o* :
u(b) > 0 and I(b) = 0};

(iif) T'(«x) the set of all transversal blocks in «, that is T'(«) = {b € a : u(b),(b) > 0};
(iv) UT(«) the set {U (b) : b € T(a)};

(v) LT(«) the set {U (b) : b e T(a*)};
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(vi) U(a) the pair (UN(a),UT(«x)), which we refer to as the upper pattern of a; and

(vii) L(«) the pair (LN (), LT(«)), which we refer to as the lower pattern of a.
Furthermore given A C Py, we denote by:

(i) U(A) the set {U(a) : « € A}, which we refer to as the A-admissible upper patterns; and
(if) L(A) the set {L(e) : a« € A}, which we refer to as the A-admissible lower patterns.

2.3.34 Proposition: For each k € Z~o and o € Py, U(a), L(a) € U(Pg).
Proof. 1t is trivially the case that:

(i) UN(«) and UT(«) are pairwise disjoint, as are LN («) and LT («); and

(ii) the unions UN (o) UUT (a) and LN (o) U LT () each form a partition of {1,...,k}.
Hence U(a) = (UN(a),UT (), L(e) = (LN (o), LT () € U(Py), that is the upper and lower patterns
of a are indeed patterns, justifying the terminology. O
2.3.35 Proposition: If a subsemigroup S of the partition monoid Py is closed under the vertical flip
involution * then S-admissible upper patterns and S-admissible lower patterns coincide.
Proof. For each p € L(S) there exist a € S such that L(a) = p. Since S is closed under *, we have
a* € S and U(a*) = L(a) = p, and hence that p € U(S). The converse follows analogously. O

2.3.36 Definition: Given a subsemigroup S of the partition monoid Py, that is closed under the vertical

flip involution *, we refer to U(S), which is equal to U(S) U L(S), as the S-admissible patterns.

For example if k = 8 and o = {{1,5,2/,3',6',7'},{2,3,4},{6,7,8,8},{1'},{4,5'} } € Ps then:

(i) UN(a) = {{2,3.4} };
(i) LN(o) = {{1},{4,5}};
(iii) T(e) = {{1,5,2/,3,6',7'},{6,7,8,8'} };
(iv) UT(a) = {{1,5},{6,7,8} };
(v) LT(a) = {{2,3,6,7}, {8} };
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(vi) Ula) = (UN(a),UT(a)) = ({{2,3,4}}, {{1,5}, {6, 7,8}}); and

(vii) L(e) = (LN(a), LT(a)) = ({{1},{4,5}}, {{2,3,6,7}, {8} }).

Note that a, U(a) and L(«) from above are depicted in Figure 2.12.

Figure 2.12: Given k = 8,

L
. « o

CEIGESPRES,

Let k € Z>o and o € Py. Graphical depictions of the upper and lower patterns of a may essentially be

thought of as being formed by taking any diagram from ®,, to depict a and cutting it in half horizontally.

However the reader should note that there do exist a € Py and d,, € B, such that simply cutting each
of the transversal lines in d, does not leave us with depictions of the upper and lower patterns of .
Consequently it is also implicitly meant that lines are added so that upper vertices in the same connected
component of §, are in the same connected component of the upper cut diagram, and analogously so
that lower vertices in the same connected component of d, are in the same connected component of the

lower cut diagram.

For example consider k = 2, o = {{1,2,1',2'}} € Py and 6, = {(1,1'), (1,2/),(2,2')} € ®,. Figure 2.13
depicts that were we to simply cut each transversal line in the depiction of J,, the resulting depiction of
an upper pattern is not a depiction of the upper pattern U(«), though the resulting depiction of a lower
pattern is a depiction of the lower pattern L(«). In order to obtain a depiction of the upper pattern

U(a) when cutting ¢, in half horizontally, we additionally need to join both upper vertices.

2.3.37 Proposition: For each k € Z> and o € Py, U(a*) = L(a) and dually L(a*) = U(a).

Proof. Follows directly from how L(«) was defined. O
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Figure 2.13: Given k =2, a = {{1,2,1',2'}} € P> and 6o = {(1,1"),(1",2'), (2,2")} € ®4. If we cut each of the
transversal lines in the depiction of §, without additionally joining both upper vertices, which share the same
connected component of d, or equivalently the same block of «, then we do not get a depiction of U(«).

AR S
[

Furthermore, since the partition monoid P}, is closed under the vertical flip involution *, that is P} = Py,

it follows that L(Pj) = U(Pyk), hence why we denote the set of all k-patterns simply as U(Py) rather
than U(Py) U L(Pg).

2.3.38 Proposition: For each k € Z> and o, € P, UN(a) CUN(af) and LN(B) C LN(af).

Proof. Trivially obvious that none of £’s blocks can interact with a’s upper non-transversal blocks and
that none of a’s blocks can interact with §’s lower non-transversal blocks when forming the product af
as the connected components of two arbitrary diagrams d, € ®, and dg € Dg, hence UN(a) C UN (af)
and LN(8) C LN (af). O

2.3.39 Proposition: For each k € Z>¢ and o, 8 € Py, if L(a) = U(B) then U(af) = U(a) and

L(aB) = L(B). O

§ 2.3.10 Ranks

2.3.40 Definition: Let k € Z>( and « € Py. The rank of «, which is often denoted as rank(«), is the

number of transversal blocks that o contains, that is rank(a) = |T'(«)].
2.3.41 Proposition: For each k € Z>¢ and «, 3 € Py,
(i) rank(a*) = rank(a);
(ii) rank(a @ B) = rank(«) + rank(S3);
(iii) rank(af) < rank(a),rank(5);
(iv) rank(af) = rank(«) if and only if U(a8) = U(«); and

(v) rank(af) = rank(8) if and only if L(a8) = L(B).
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Proof. Vertically flipping a bipartition trivially does not alter the rank, that is rank(a*) = rank(«),
and the rank of the vertical sum of bipartitions is trivially equal to the sum of their ranks, that is
rank(a @ ) = rank(«) 4 rank(3), establishing Conditions (i) and (ii). There are two ways in which

rank(af) may differ from rank(a):
I some of B’s transversal blocks, possibly along with some of 8’s upper non-transversal blocks and
a’s lower non-transversal blocks, may join some of o’s transversal blocks; and

II some of B’s upper non-transversal blocks, along with possibly some of a’s lower non-transversal

blocks, may cap some of a’s transversal blocks.

Neither I or IT allows us to split a transversal block of a so that rank(a) < rank(a/3), giving Condition
(iif). If rank(af) = rank(a) then neither I or IT could have occurred, hence we must have U(af) = U(«).
Conversely if U(af) = U(a) then we trivially must have rank(af) = rank(«a), giving Condition (iv).

Condition (v) is trivially the dual of Condition (iv). O

§ 2.3.11 Green’s relations

2.3.42 Theorem: (see [25] [63]) For each k € Z>o and «, 8 € Py:

(i) (a,B) € R if and only if U(a) = U(B);
(ii) (o, B) € £ if and only if L(a) = L(B);
(iii) (a, 8) € M if and only if U(a) = U(B) and L(a) = L(B); and
(iv) (o, B) € J if and only if U(a) = U(B).

2.3.43 Corollary: If S is a subsemigroup of the partition monoid that is closed under * then for each

a, B eSs:

(i) (e, B) € R if and only if U(a) = U(B);
(ii) (o, B8) € L if and only if L(a) = L(B);
(iii) (o, B) € H if and only if U(a) = U(B) and L(a) = U(B);

(iv) U(a*a) = U(B*P) if and only if L(a*«) = L(B*S) if and only if a*a = §*8; and
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(v) Ulaa*) = U(BS*) if and only if L(aa*) = L(BS*) if and only if aa™* = 85*.

Proof. Coniditions (i), (ii) and (iii) follow by applying Proposition 2.2.26 to Theorem 2.3.42. It follows
from Condition (i) that U(a*a) = U(5*S) implies (a*«, 5*8) € R. Since a*a and S* are projections,
and each R class contains precisely one projection, we must have a*a = *f. The converse is trivial
and equivalence with L(a*a) = L(8*B) follows dually, from which Condition (iv) follows. Condition (v)

follows analogously to Condition (iv). O

B 2.4 Contextually relevant diagram semigroups
2.4.1 Definition: By a diagram semigroup we shall mean any subsemigroup of the partition monoid.

A number of diagram semigroups will either be directly relevant at various stages or simply useful as
having similar properties to the diagram semigroups that will be introduced and investigated later in our

discussion.

§ 2.4.1 Generating sets

So that readers may conveniently refer back to one place, we next define all generating sets that will

appear at some point through the remainder of the thesis.

2.4.2 Definition: For each k € Z~o and i € {1,...,k — 1}, we denote by o; the bipartition containing:
(i) the two transversal lines {i, (i + 1)’} and {i + 1,4'}; and
(ii) for each j € {1,...,i—1,i+2,...,k}, the vertical line {7, j'}.

We refer to the k£ — 1 bipartitions {ai s e{l,....k— 1}} as the transposition generators (see Figure

2.14 for an example).
Figure 2.14: Given k = 4, the three transposition generators may be depicted as:

g1 02 03

A\ A\ A\
A \ \
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2.4.3 Definition: For each k € Zso and i € {1,...,k — 1}, we denote by t; the bipartition containing:
(i) the (2,2)-transapsis {i,i + 1,4, (i +1)'}; and
(ii) for each j € {1,...,i—1,i+2,...,k}, the vertical line {j,j'}.

We refer to the k& — 1 bipartitions {ti cie{l,... k- 1}} as the (2,2)-transapsis generators (see Figure

2.15 for an example).

Figure 2.15: Given k = 4, the three (2, 2)-transapsis generators may be depicted as:

t1 to t3

2.4.4 Definition: For each m € Zsg, k € Z>,, and i € {1,...,k — m + 1}, we denote by a]* the
bipartition containing:

(i) the two m-apses {i,...,i+m —1} and {¢,...,(i + m —1)'}; and

(ii) for each j € {1,...,i—1,i+m,...,k}, the vertical line {j,j'}.
We refer to the k—m+1 bipartitions {a;” e d{l,..., k—m+1}} as the m-apsis generators. Recall from
Definition 2.3.10 that we are referring to 1-apses as monapses, 2-apses as diapses and 3-apses as triapses,
consequently we shall refer to 1-apsis generators as monapsis generators, 2-apsis generators as diapsis

generators and 3-apsis generators as triapsis generators (see Figures 2.16, 2.17 and 2.18 for examples).

Furthermore, when convenient we denote the ith diapsis generator a? as .

Figure 2.16: Given k = 4, the four monapsis generators may be depicted as:

1 1 1 1
aj as az as

2.4.5 Definition: For each k € Z-o and i € {1,...,k — 1}, we denote by:

(i) f; the bipartition containing:

(I) for each j € {1,...,i — 1}, the vertical line {j, j'};

43



Chapter 2: Background

Figure 2.17: Given k = 4, the three diapsis generators may be depicted as:

a%:bl a%:bg agzbg

A A P
¢ ' ¢

Figure 2.18: Given k = 5, the three triapsis generators may be depicted as:
a3 a3 a3
x xR 0
¢ i e ¢ & e ¢ & e
(IT) the monapses {k} and {i'}; and
(III) for each j € {i,...,k — 1}, the line {7, ( + 1)'}, and
(ii) b; the bipartition containing:
(I) for each j € {1,...,i — 1}, the vertical line {7, j'};
(IT) the monapses {i} and {k’}; and

(II) for each j € {i,...,k — 1}, the line {j + 1, 5'}.

We refer to the 2k — 2 bipartitions {fi,bi i ed{l,....k— 1}} as the PZSy generators (see Figure 2.19

for an example), where PZS}, is the planar symmetric inverse monoid, defined later in Definition 2.4.34.

Figure 2.19: Given k = 3, the four PZS3 generators may be depicted as:

bl bg fl f2
[ ] [ ] [ ] [ J
//. /. .\\ .
§ 2.4.2 The planar partition monoid PP

2.4.6 Definition: Let k € Z~(. A diagram § € ®y, is referred to as planar if it may be depicted without

two distinct connected components crossing and non-planar otherwise. We denote by P®; the set of all

planar k-diagrams.
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2.4.7 Definition: Let k € Z~y. A bipartition o € Py, is referred to as planar when the diagrams ®,,
that depict a are planar, and non-planar when the diagrams ®,, that depict « are non-planar. We denote

by PP the set of all planar bipartitions.

2.4.8 Proposition: Let k € Z~o and a € Py. Either « is planar or « is non-planar, that is either every

diagram in ®,, is planar or every diagram in ®, is non-planar. O

Without giving all the gory details, Proposition 2.4.8 may be established by arguing that given k € Z~
and b C {1,...,k}U{l’,... k'}, every connected graph on b induces the same partition of {1,...,k} U
{1',...,k'} — b, and the partition induced by each depiction of the block b within the convex hull of

{1,...,k} x {0,1} is the coarsest partition finer than the partitions induced by distinct by, by € b.

2.4.9 Proposition: For each k € Z~, the set of planar bipartitions PPy, is a submonoid of the partition

monoid Py.

Proof. Let o, 3 € PPy, 0o € ®, and dg € ®g. In the product graph I'(d,,d), none of the connected
components cross in the upper or lower half since §, and d3 are planar, and any connected components
that join at one of the vertices in the middle row become part of the same connected component in the

product af. O

2.4.10 Definition: For each k € Z~, the monoid of planar bipartitions PPy, is referred to as the planar

partition monoid.

2.4.11 Proposition: (see [33]) For each k € Z>, the planar partition monoid PPy, is characterised by

the generators {a;,al,t; 14 =1,...,k — 1} along with the relations:

(i) aja; = aj;
(i) ajaj = aja;j for all [j —i] > 1;
(i) € =&,

(iv) t;t; = t;t; for all [j — 4| > 1; and

(v) altjal =al forall |j —i| = 1. O

§ 2.4.3 The symmetric group S;

The symmetric group, which really ought to need no introduction at all, is most commonly known as

either the permutations of a set or equivalently the bijections from a set to itself. In the context of

45



Chapter 2: Background

diagram semigroups, the symmetric group may be defined as follows.

2.4.12 Definition: For each k € Zx(, the symmetric group, which we denote as Sy, is the set of

bipartitions such that every block is a transversal line.

2.4.13 Proposition: (see [49]) For each k € Z-g, the symmetric group Sy is characterised by the

transposition generators {O'i cie{l,... k— 1}} along with the relations:

(ii) 0i04410; = 0i4104041; and
11) 0,0, = 0Op0; TOr a —1 > 1.
(iii) for all |k —i| > 1 O

2.4.14 Definition: For each k,z € Zso and p1,..., fa,Y1,---,vz € {0,...,k} such that 37 _jpu; =
Y% v =kand p;+; > 0foralli € {1,...,z}, we denote by @ (H171),(272) the set of all bipartitions

a={by,...,by} € Py such that for each i € {1,...,2}, b; is a block of type (1;,Vi)-

2.4.15 Proposition: For each k,xz € Z~o and p1,. .., fg, V1, ---,7s € {0,...,k} such that X7 _,pu; =
X7 vi=kand g+, >0foralli e {1,...,z}:

(i) w7)sn(teyz) O PPy is non-empty; and

(ii) WHr)nliere) = §papSy, for all ¢ € W) (e 7e) O

Proof. (i) {{1,...,p1, 1, ..., } .-, {Effll,ui—ﬁ—l, ook (Zf;ll'yi+1)’7 k'3 € lim)ss (e ¥e) A PPy,

(ii) It is trivially the case that multiplication on the left by permutations is equivalent to permuting
the upper vertices, and similarly that multiplication on the right by permutations is equivalent to

permuting the lower vertices.

§ 2.4.4 The Jones monoid J;

2.4.16 Definition: For each k € Zx, the Jones monoid, which is often denoted as Jj, and also commonly
known as the Temperley-Lieb monoid, is the set of planar bipartitions such that every block contains

precisely two vertices.

2.4.17 Proposition: The cardinality of the Jones monoid |Jx| is equal to the kth Catalan number
(sequence A000108 on the OEIS [53]). O
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Recall from Definition 2.4.4 that we will be denoting the ith diapsis generator a? as &; whenever it is

convenient to do so.

2.4.18 Proposition: For each & € Z>(, the Jones monoid J is characterised by the generators
{6;:i=1,...,k— 1} along with the relations:

(i) & =d;

(ii) bibjbi = bjbibj for all ‘j — ’L‘ = 1; and

First we review how Ridout and Saint-Aubin [54] establish Proposition 2.4.18.

2.4.19 Definition: We refer to elements of the free semigroup of the Jones monoid J;, ™ as Jj-words,
and say that a Jx-word is reduced if it may not be written with fewer generators using the relations from

Proposition 2.4.18.

2.4.20 Proposition: In any reduced Ji-word b&;, ...d; , the maximal index m = max{ij 1] €
{1,...,n}} occurs precisely once.
Proof. See Lemma 2.2 of [54]. O

2.4.21 Proposition: If W is a reduced Ji-word with maximal index m then W may be rewritten as

W = W'8,,...8 where W' is a reduced P#M;-word with maximal index less than m and [ € {1,...,m}.

Proof. See [54]. O

2.4.22 Proposition: For each k € Z>», any reduced Ji-word W may be rewrittenas W =rj, 4, ... 75, 4,

where:

(i) n € Zso and 41,...,0n, 41, -,Jn € {1,...,k — 1} such that:

(I) for each I € {1,...,n}, j; > 4;; and

(IT) for each i € {1,...,n — 1}, 4y < 441 and j; < ji+1, and

(11) for each [ € {1, .. .,n}, Tji i = bjl .. b“

Proof. See Proposition 2.3 (Jones’ Normal Form) in [54]. O
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2.4.23 Definition: Ji-words written in the form for Proposition 2.4.22 are referred to as being in

normal form.

To establish Proposition 2.4.18, it is now sufficient to establish that the number of Ji-words in normal
form is equal to the cardinality of the Jones monoid |Ji|. Ridout and Saint-Aubin did so by establishing
a bijection between Ji-words in normal form and lattice paths from the origin to (k, k) that do not step
above y = z using the step-set {(1,0),(0,1)}, while also noting that the number of such lattice paths
also form the Catalan numbers. We provide an alternative counting argument here, which is similar to
how we shall bound reduced P#H3-words in Subsection 6.1.1 later on.

2.4.24 Definition: For each k € Z>5 and ¢,j € {1,...,k — 1} such that ¢ < j, we denote by r;, the

product d; ...d; of diapsis genators, and refer to r;; as the run of diapsis generators from j to i.

2.4.25 Definition: For each k € Z~, we define a binary relation < on runs of diapsis generators by

rji < r;, if and only if j < j and i < i’ (see Figure 2.20 for a depiction).

Figure 2.20: Runs of diapsis generators ordered by <:

3,1 3,2 73,3

72,1 72,2

T1,1

Note that < is trivially transitive, that is if r; ; < vy and rj 4 <710 30 then r;; < rjn . Further note
that a product of runs of diapsis generators r;, ;, ...7;, i, is a Jip-word in normal form if and only if for
each [ € {1,...,n — 1}, 75,45, < T -

2.4.26 Definition: For each ¢,j € Z~¢ such that i < j, we denote by R;; the number of Jj-words in

normal form that end with the run r; ;.

For example the Ji-words in normal form that end with the run r3 3 are {rs s, 721733, 72,273,3, '1,172,273,3,

r1,173,3}, and hence Rg 3 = 5.
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2.4.27 Proposition: For each i, j € Z~( such that ¢ < j,

1 1 =1; and
Rjiz

’ 71 i .
1+ E;,legllej/’il 1> 1.
Proof. Since no Jj-words in normal form may have a run before 7; 1, 751 is the only J-word in normal
form that ends with run 7, hence R;; = 1. When 7 > 1, r;; is trivially a J3-word in normal form,
then for each j/ € {1,...,5—1} and i’ € {1,...,5'}, each Jx-word in normal form ending with the run
T4 4 is still a Jp-word in normal form when multiplied on the right by r;;, and each word formed when

doing so is unique. O

Table 2.3 contains computed values of R;; for i,7 € {1,...,10} such that ¢ < j, which together form
Catalan’s triangle (sequence A009766 on the OEIS [53]) with the right border removed (sequence A030237
on the OEIS [53]).

Table 2.3: Number of planar mod-2 normal form words ending with a run from ER{ .

; ‘It 2 3 4 5 6 7 8 9 10
1 |1
2 |1 2
3 |1 3 5
4 |1 4 9 14
5 |1 5 14 28 42
6 |1 6 20 48 90 132
7 11 7 21 75 165 297 429
8 |1 8 35 110 275 572 1001 1430
9 |1 9 44 154 429 1001 2002 3432 4862
10 |1 10 54 208 637 1638 3640 7072 11934 16796

Note that the diagonal of Catalan’s triangle is the Catalan numbers. Further note that the number of
Ji-words in normal form is trivially equal to 1 4 Ef;ll >J_R;; = Ry, which provides an alternative
argument than that given by Ridout and Saint-Aubin [54] for the number of J-words in normal form
being equal to the cardinality of the Jones monoid |J|, establishing Proposition 2.4.18. This also

provides us with a constructive way to recursively generate the J-words in normal form in an abstract

manner.
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§ 2.4.5 The Brauer monoid B

2.4.28 Definition: For each k € Z>¢, the Brauer monoid, which is often denoted as By, is the set of

bipartitions such that every block contains precisely two vertices.

2.4.29 Proposition: (see [45]) For each k € Z>q, the Brauer monoid By, is characterised by the gener-
ators {0;,8; :i=1,...,k — 1} along with the relations:

(i) 0? = idy;

(ii) 04410i0i41 = 040111033

(iii) ojo; = 00, for all j —i > 2;

(iv) 82 =&;;

(v) 8;8;8;, =9, forall |j —i| =1;

(vi) 8;6; = 8;0; for all j —i > 2;

(vil) 0:8; = &; = d;04;
(viii) &;8;0; = &;0; for all |j —i| =1,

(ix) 0:8;8;, = g;; for all |j —i| = 1; and

(x) 8o, = 03, for all [j — i > 2. O

It turns out that Relations (vii), (viii), (ix) and (x) from Proposition 2.4.29 are stricter than required,

which we establish in the following proposition.

2.4.30 Proposition: For each £ € Z>g, the Brauer monoid By is characterised by the generators
{0:,8; :i=1,...,k — 1} along with the relations:
(i) o2 =idy;
(i) 0i410i0i41 = 0i0i1103;
(iii) ojo; = 040, for all j —i > 2;
(iv) & = &;

(v) 8;0,;0; = b; for all li—1i =1
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(Vi) bjbi = bibj for all ] —1 > 2;

(Vii) 0'11)1 = bl = 610'1;

(Viii) bibi-&-lai = bi0i+1§

(iX) 08118 = 04416;; and

(x) &0, = 0;b; either for all j —¢ > 2 or for all i — j > 2.

Proof. Tt is sufficient for us to show that Relations (vii), (viii), (ix) and (x) from Proposition 2.4.29 may

be deduced from Relations (i)-(x) above.

Let i € {1,...,k — 2}. First:

(i) applying Relations (iX) and (V), (O’i+1bi)bi+1 = Ui(bi+1bibi+1) = O'ibi+1;

(ii) applying Relations (Viii) and (V), bi+1(bi0'i+1) = (bi+lbibi+1)ai = bi—i—lai; and

(iii) applying Relations (ix), (i), (viii), (v) and (i) again, 0;(0;+18:)0i+10; = (040:)811(8;0i11)0; =

idg (8i418:0i41)(0i03) = 8;41.

To establish that Relation (vii) from Proposition 2.4.29 may be deduced we proceed by induction. Sup-
pose that 0;8; = §; = §;0;, noting that for induction the base case of ¢ = 1 is still given by Relation (vii),

then we have bi—&-lUH—l = Ui0i+1bi(0i+laiai+1) = Ui0i+l(bi0i)0i+10i = Ui0i+lbi0i+10i = bi+1.

It remains for us to show that Relation (x) from Proposition 2.4.29 may be deduced. First note that

O—i+1bi0—i+l = o—i—o—lbibi—&-lo—i = Uibi+1bibi+10—i = Jibi+10i. Now for each ] € {’L + 1, ey k — 1},

aj_lajbj_lajaj_l = oj_laj_lbjaj_laj_l

=%;; and
0j—1...0405.. .ai+1biai+1 -0 0404...05-1
=0j-1..-0404.. -O'i+20'ibi+10'iai+2 2-.0404...05-1

=04j—-1.--044105 ... Gi+26i+1ai+2 <. 040441...05-1

=5;.
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Finally for each j € {i+2,...,k — 1},

52

O'Z‘bj

0j—1--

=0i05j-1...0{05.. ~Ui+lbi0i+1 +-.0404...05-1

-0i0i4105 ... Ui+1biai+1 2..0404...05-1
- 005 ... 0'7;+10'i+26i0'i+1 +-.0404...05-1
005 ... O-i+lbio'i+20'i+1 <..0404...05-1
.00 ... 0i410;0441...00;410;...05_1

005 ... O'i+1biO'i+1 -..0405...05-104
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Next we establish that the relations used by Kosuda [43] on diapsis and (2,2)-transapsis generators
when giving a presentation of the mod-2 monoid mz, outlined later in Proposition 2.4.43, also form a

presentation of the Brauer monoid By.

2.4.31 Proposition: For each £ € Z>g, the Brauer monoid By is characterised by the generators
{0:,8; :i=1,...,k — 1} along with the relations:

(i) 01'2 = idy;

(ii) 0441090141 = 040111043

(i) ojo; = 00, for all j —i > 2;

(iv) &2

i =8
(V) bjbi = bibj for all ] —1 > 2;
(Vi) 0'151 = bl = 610'1;
(vil) 841 = 030i4180i4105;
(Viii) 610'261 = bl; and
(ix) &;0; = 0;; either for all j —i > 2 or for all i — j > 2.
Proof. It is sufficient for us to show that Relations (v), (viii) and (ix) in Proposition 2.4.30 may be
deduced from Relations (i)-(ix) above.
First for each i € {1,....,k — 1},
Tir1(8i11) = (0i410:0i41)8i0i110;
=0i0i+1(0:di)0iy10;
= (04044150 110;)
=441
= (03044150 110;)
=0i0i+1(80i)0iy10;

= 00,418 (0i410i0i41) = (8i41)0i41-
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Now for each i € {2,...,k — 2} (note that our proof uses the first choice for Relation (ix) above),

Finally for each ¢ € {1,.

(8:)0541(8;) = 04-10:%-104(0i—10i41)0i—10:% 1001
=0i-108-10i0i11(0i—104-1)0:di_10;0;_1
=0;-10:%_1(0i0i410)4_10,0,_1
= 0,-10;(8i=10i+1) 0 (0i418,-1) 001
=0i-10i0i41(8-10:8_1)0i 11001
=0;-10i(0i+19i-1)0i+10:0;_1
=0;-10:8_1(0i110i41)0:0i—1

= (04-10:%i-10;05-1) = b;.

ok —2}:

8;(8i4+1)8; = (8i0i)Ti418i0i11(0:d;)
= (80:118;)0i118;
= (8i0i418;) = &;;

(8i41)8i(di41) = 00118041 (0:9:) 050418, 045410;
= 0i0i+18;0i41(807)0i418;0410;
= 0,0i+1(8:0i+18;)0i+18;0:410;
= 0i0i11(80i118)0i110;
= (0i0i1180i1104) = ;4 1;

8 (dir1)0i = (8;04)0i118;0411(0:0%)
= (8i03418i)0i41 = 8;0411; and
0i(8i11)8 = (0504)0i418i0511(0:d;)

= 0,41(805418;) = 0i41%;.

It was pointed out to the author by James East that by rewriting Relation (vii) from Proposition 2.4.31
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as 8;110;0,41 = 0;0;418; we get one of the relations for the singular braid monoid [5, 7]. The author notes
that in fact all of the relations for the singular braid monoid [5, 7] may be deduced from the relations in

Proposition 2.4.31.

§ 2.4.6 The symmetric inverse semigroup ZSj

2.4.32 Definition: For each k € Z>, the symmetric inverse semigroup, which is often denoted as ZSy,

is the set of bipartitions such that every block is either a transversal line or a monapsis.

2.4.33 Proposition: (see [12, 16, 51]) For each k € Z>¢, the symmetric inverse semigroup ISy, is

characterised by the generators {ai,a}, abi=1,...,k— 1} along with the relations:

(i) of =04

(i) 040i410; = 0i410i0441;
(iii) ojo; = 0405 for all |j —i| > 2;
(iv) (a)” =al;

(v) ajaj =aja; for all [j —i| > 1;

. 11 .
(vi) oia; = a; 104
and

(vii) a0, = oia;

7

(viii) oja} = alo; for all j #4,i+ 1. O

§ 2.4.7 The planar symmetric inverse semigroup PZS;

2.4.34 Definition: For each k € Zx(, the planar symmetric inverse semigroup, which we shall denote
as PZSy, is the set of planar bipartitions such that every block is either a transversal line or a monapsis
(see Figure 2.21 for examples), that is the meet of the planar partition monoid PP and the symmetric

inverse semigroup ZSy.

2.4.35 Proposition: (see [17]) For each k € Zx, the planar symmetric inverse semigroup PZSy is

characterised by the generators {f;,b; : 4 =1,...,k} along with the relations:
(i) f;f; = fifjpq forall 1 <i<j<k-—1;
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Figure 2.21: Given k = 3, the twenty elements of PZS3s may be depicted as:

N

PRI IPRIPLARN
Lo o] e

iz

(iii) bib; =bj1b; forall 1 <i<j<k—-1;

(iv) bibg =b; for all 1 <4 < k; and

fefj_abi  forall 1 <i<j <k,
(v) bz‘fj: f. = by forall 1 <i=j <k, and O
fefibi-1  forall 1 <j<i<k.

§ 2.4.8 The monoid of planar uniform block bijections PJ;

2.4.36 Definition: For each k € Zxq, the planar monoid of uniform block bijections, which is often

denoted as PJx, is the set of planar bipartitions such that every block is uniform.

2.4.37 Proposition: For each k € Z>(, the monoid of planar uniform block bijections Pg} is charac-

terised by the generators {t; : ¢ = 1,...,k — 1} along with the relations:

(i) t7 =t;; and

(11) tjti = titj for all |] — Z‘ > 1. O

§ 2.4.9 The monoid of uniform block bijections 3§

2.4.38 Definition: For each k € Z>¢, the monoid of uniform block bijections, which is often denoted as

Sk, is the set of bipartitions such that every block is uniform.
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2.4.39 Proposition: (see [24, 38]) For each k € Zx>(, the monoid of uniform block bijections §j is
characterised by the generators {o;,t; : ¢ =1,...,k — 1} along with the relations:
(i) o2 =idy;
(i) 0i410i0i41 = 0i0i1103;
(iii) ojo; = 0,05 for all |j —i| > 2;
(iv) t2 =ty;
(v) o1t1 =t1 = ty0q;
(vi) oaotio9t] = t109t109;
(vil) 09010309t102010309t1 = t109010302t102010309; and
(viil) o4t =tyo; forall i =3,...,k— 1. O
2.4.40 Proposition: (see [15, 38, 45]) For each k € Z>(, the monoid of uniform block bijections §j is
characterised by the generators {o;,t; : i =1,...,k — 1} along with the relations:
(i) o2 =idy;
(ii) 0441090111 = 03011043
(iii) oj0; = 0,0, for all |j —i| > 2;
(iv) £ =t;
(V) tjt; = tit;;
(vi) oit; = t; = tioy;
(vii) either o;1t;0541 = oitiy10; [38] or 04410:ti11 = t;05410; [15]; and

(viii) o;t; =t;0; for all [j —i| > 2. O

§ 2.4.10 The modular partition monoid M’

2.4.41 Definition: For each m € Z~ and k € Z>,,, the modular partition monoid or more simply the
mod-m monoid when ambiguity is of no concern in the context the term is used, which we denote as
M is the set of all bipartitions « € Py, such that for each block b € «, u(b) = I(b) (mod m) (see Figure

2.22 for some examples).
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Chapter 2: Background

Note that the mod-m monoid M} was referred to by Kosuda as the party algebra of type B in [39, 40]
and as the m-modular party algebra in [42, 43], and referred to by Ahmed, Martin and Mazorchuk as the
d-tonal partition monoid in [1].

Figure 2.22: Examples of bipartitions in the mod-m monoid M}".
NRE S E N
ﬁ e

2.4.42 Proposition: M} is a monoid.

Proof. Let o, 8 € M;'. Suppose that when forming the product af, © € Zsq blocks ay,...,a, € «
join with y € Zsq blocks by, ...,b, € 3, forming the block (J;_, U (a;) U ngl L(b;) € ap. It follows
from XF_ju(a;) = X7_1(a;) (mod m), BF_;1(a;) = X5_ u(by) and XY_,u(b;) = X4_,1(b;) (mod m) that

2 ula;) = BV

9-10(bj) (mod m). O

Note it follows by definition that

i) the mod-1 monoid M} is equal to the partition monoid Pj; and
k
(ii) if & < m then the mod-m monoid M;" is equal to the monoid of uniform block bijections Fy.

2.4.43 Proposition: (see [43]) For each k € Z>(, the mod-m monoid M is characterised by the

generators {Ui,ti,a}" i=1,...,k—1,5=1,...,k—m+ 1} along with the relations:

(i) o2 =idy;
(ii) 0i0i410i = 0441005415
(i) ojo; = 040, for all j —i > 2;
(iv) t2 =t;;
(v) tjt; = t;t; for all [j —i| > 1;

(vi) &"a)" = aj";
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(vii) a*a* = a"a?" for all [j —i| > m;
(viii) tjo; = t; = oity;

(ix) 030i41ti0i4105 = tiy1;

(x) tjo; = o5t for all |j —i| > 2;

(xi) a"o; =a* = ogja” for all j € {4,...,i+m — 2}

(xii) a*ojpm—_1al" = a* = a"o;_1al%;

(xiii) 0...0ipm—14]"Citm—1...0; = aQj1q;

(xiv) a*o; =oja* for all j € {1,...,i — 2,54+ m, ...,k — 1};

(xv) a't; = a" = t;al™;

(xvi) tiaf% it = tipm—167"tiym—1 = ti...tiz,m_1; and
(xvii) a"t; =t;af* forall j € {1,...,i —2,i+m, ...,k —1}. O
Recall from Subsection 2.4.5 that Kudryavtseva and Mazorchuk used a slightly different set of relations
to give a presentation of the Brauer monoid Bj than the relations used on diapsis and transposition

generators in Proposition 2.4.43. Switching these relations again gives us a second equivalent set of

relations that present the mod-2 monoid 3.

2.4.44 Proposition: For each k € Z>p, the mod-m monoid M}" is characterised by the generators
{oi,ti,a}” a=1,...k—1,7=1,....k—m+ 1} along with the relations:
(i) o2 =idy;
(i) 050i410; = 0i110i0441;
(i) ojo; = 0,0, for all j —i > 2;
(iv) & =t;;
(v) t;t; = t;t; for all |[j —i| > 1;
(vi) 8;8; = &;;

vii bib‘bi = bi for all ] —1| = 1;
J
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(vili) &;8; = 8;0; for all |7 — i > m;
(ix) tio; = t; = oyty;
(x) 0i0i41ti0i 105 = tig1;
(xi) tjo; = oit; for all [j — i > 2;
(xii) djo; = &; = 03d;
(xiii) 8;8;410; = 8;0i41;
(xiv) 00118 = 03418;;

(xv) d0; = o8 for all |[j —i| > 2;

(XVii) tibi+1ti = ti-‘rlbiti-i-l = titi-‘rl; and
(XVlll) bitj = tjbi for all ‘j — ’L‘ > 2.
Proof. Tt is sufficient for us to show that Relations (vii), (xiii) and (xiv) from above follow from the
relations in Proposition 2.4.43. Note that all but Relations (vii), (xiii) and (xiv) from above already
appear in Proposition 2.4.43. For each 4,5 € {1,...,k — 1} such that j —i = 1:
(1) bz(b])bl = (bidi)gjbin(O'ibi) = (bidjbi)djbi = (510‘761) = bi,
(ii) bi(bj)ai = (biO'i)O'jbiO'j(O'iUi) = (biO'jbi)O'j = biO'j;
(111) O'Z(bj)bz = (O’Z‘Ui)O'jbiO'j(O'ibi) = O'j(biO'ij') = O'jbi; and

(IV) (b])bl(b]) = UiO'jbiO'j(O'ibiO'i)O'jbiO'jO}; = Uicrj(bicrjbi)crjbiojcr,- = O'iO'j(bq;O'jbi)O'jO'i = (aiajbiojcri) =

5.

§ 2.4.11 The planar modular partition monoid PM;"

2.4.45 Definition: For each m € Zsy and k € Zx,,, the planar modular partition monoid or more

simply the planar mod-m monoid when ambiguity is of no concern in the context the term is used,
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which we denote as PM}', is the planar analogue of the mod-m monoid P#M]", that is the set of all
planar bipartitions o € PPy, such that for each block b € «, u(b) = 1(b) (mod m) (see Figure 2.23 for an

example).

Figure 2.23: Given m =3 and k =5,

c P

Note it follows by definition that

(i) the planar mod-1 monoid [ijl,l€ is equal to the planar partition monoid PP}; and
(ii) if & < m then the planar mod-m monoid PM;' is equal to the monoid of planar uniform block

bijections PFy.

Surprisingly, to the best of the author’s knowledge, the planar mod-m monoid PM]" has only been
examined elsewhere in [1], the work for which was undertaken simultaneously and independently to the

author.
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Chaper 3
CHARRCTERISATIONS

B 3.1 The m-apsis generated diagram monoid @’

§ 3.1.1 m-apsis generators
For each m € Z~o and k € Z>,:

(i) recall from Definition 2.3.10 that an m-apsis is a non-transversal block containing m consecutive

vertices, a monapsis is a 1-apsis, a diapsis is a 2-apsis, and a triapsis is a 3-apsis; and

(ii) recall from Definition 2.4.4 that for each m € Zs¢ and k € Z>,,, the m-apsis generators consist of

the & —m + 1 bipartitions ai", ..., e, ., such that for each i € {1,...,k —m + 1}, o contains:

(I) the two m-apses {i,...,i+m —1} and {¢,...,(i+m —1)'}; and

(IT) for each j € {1,...,i —1,i+m,...,k}, the vertical line {7, j'}.

For example there are four monapsis generators when k = 4 as depicted in Figure 3.1, and three triapsis

generators when k = 5 as depicted in Figure 3.2.

3.1.1 Definition: Given m € Z and k € Z>,,, we denote by @} the monoid generated by the m-apsis
generators {a;” :j€{1,....k—m+1}} along with the identity bipartition id, that is @' denotes the
monoid (a7,idy, : j € {1,...,k —m + 1}). We shall refer to the monoid A" as the m-apsis generated
diagram monoid or, for the sake of being succinct when ambiguity is of no concern in the context the

term is used, simply as the m-apsis monoid.
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Figure 3.1: Given m = 1 and k = 4, there are four monapsis generators depicted as follows:

1 1 1 1
a a3 a3 ay

Figure 3.2: Given m = 3 and k = 5, there are three triapsis generators depicted as follows:

3

3 3
a3 a3

ay

7 N 2
¢« ¥ ¢« & ¢« ¥

Monapsis generators are idempotent and trivially commute with each other, hence the monapsis monoid

@, is trivially isomorphic to the join-semilattice of subsets of {1,...,k} under @ — {i} for all i €
{1,...,k}.

The diapsis monoid gi is by definition the Jones monoid Ji, that is gi = Jir. We proceed to characterise

the bipartitions contained in the m-apsis monoid @;" for m € Z>s.

§ 3.1.2 Runs of m-apsis generators
3.1.2 Definition: For each m € Zs, k € Z>p, and i,j € {1,...,k—m+ 1}:

(i) the run of m-apsis generators from i to j is the product a.. .aj" of m-apsis generators where

indices increase by one throughout the product when ¢ < j, and decrease by one when ¢ > j; and
(ii) we denote by t} the planar bipartition containing:

(I) the upper m-apsis {i,...,i +m — 1};
(IT) the lower m-apsis {j’,...,(j +m —1)'}; and

(IIT) transversal lines connecting the remaining vertices in a planar fashion.

For example, given m = 3 and k = 6, t3 € PPg is depicted in Figure 3.3.
m

When reading the proof of Proposition 3.1.3, where we establish that t;» is precisely the run & ...a7

of m-apsis generators, the reader may find it useful to refer to Figure 3.4 which illustrates that, given
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Figure 3.3: Given m = 3 and k = 6,

N
t% = € PPs
« ¥

m = 3 and k = 6, t3 = ajaja; € gg, along with Figure 3.5 which illustrates that given m = 3 and

i,z € {1,...,k — 2} such that i <z, t{ =+i_,a3.
3.1.3 Proposition: For each m € Z>g, k € Z>y, and 4,5 € {1,...,k —m + 1}, t§- is equal to the run

m

a’...a7" € 4. of m-apsis generators.

? J

%

Proof. When i = j, t;— = a" by definition. When ¢ < j, let « € {i +1,...,5} and suppose t’,_; =

am

m...a™ ;. When forming the product t,_;a™ (see Figure 3.5 for a depiction):

(i) The upper m-apsis {i,...,i+m — 1} in ti_; along with the lower m-apsis {2/,...,(z +m — 1)’}

in @' are preserved;

(ii) The lower m-apsis {(x —1),...,(z +m —2)'} in v}, _; and the upper m-apsis {z,...,z +m — 1}
in @' connect at the middle row vertices z, . ..,z +m — 2, also joining to both the block {x +m —1,
(x +m — 1)’} in v’ _; along with the block {z — 1, (x — 1)’} in a’, all together forming the block
{x+m—-1,(x—1)'}; and

(iii) Finally there is no option other than for the remaining transversal lines of % _; to connect to the

remaining vertical lines of aJ’.

Hence t), = t,_,a7" = af"...a", by induction it follows that t} is the run of m-apsis generators aj* ... a7".
Finally when i > j, v} = (v/)* = (a7 ...a")" = a" .. a7 O

Next we establish in Proposition 3.1.4 that for each 4,j,x € {1,...,k —m + 1}, tfct;-” = t; The reader

may find it useful to refer to Figure 3.6 which illustrates, given m = 3 and k = 8, that 3t} = ¢f.

3.1.4 Proposition: For each m € Z>g, k € Z>,, and i,j5,2 € {1,...,k —m + 1}, tit;” = t;
Proof. In the product tit;”:

(i) The upper m-apsis {i,...,i +m — 1} in t! is preserved;

(ii) The lower m-apsis {j’,...,(j +m — 1)} in t§ is preserved;
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Figure 3.4: Given m =3 and k = 6, v3 = alalal ¢ @Z,

S
S
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ERER.

Figure 3.5: Given m =3 and 4,z € {1,...,k — 2} such that i < z, =1 _jam.
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(z = 1)

(iii) The lower m-apsis of v, and the upper m-apsis of v cap each other off; and

(iv) Finally there is no option other than for the remaining transversal lines of v!, and tj to connect to

each other.

T T i
Hence tgrf = t}. O
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Figure 3.6: Given m =3 and k = 8, vt} = ¢f.

3 NP
e

§ 3.1.3 m-apmorphisms

3.1.5 Definition: Given m € Z>3 and k € Z>,, by an m-apmorphism we shall mean a planar bipartition
0 € PPy such that each block b € 6 is either an m-apsis or a transversal line. Furthermore we denote by

O} the set of all m-apmorphisms.

3.1.6 Definition: For each t € {0,...,|£|} and wy,...,u,ly,..., 0 € {1,..., k — m + 1} such that
wj+m <wjyy and [j+m <l forall j € {1,...,t — 1}, we shall denote by ;" the m-apmorphism
containing:
(i) t upper m-apses {u;,...,u; + m — 1} where ¢ € {1,...,t};
(ii) t lower m-apses {ll,...,(l; + m — 1)’} where i € {1,...,¢}; and
(iii) transversal lines connecting the remaining vertices in a planar fashion.

For example 6! = idj, and given m = 3 and k = 9, 0;’:? € O3 is depicted in Figure 3.7.

Figure 3.7: Given m =3 and k =9,

0, )" is equal to the product of runs v}
t

l\')CAJ
So

t—1)+1
tm( )+ . tl .
It 5

We proceed by establishing that .’C?,f(t_l)ﬂ

,,,,,

The reader may find it useful to refer to Figure 3.8 which illustrates, given m = 3 and k = 9, that

3.6 _ 3 6.4..1 3
057 = v30%ts = viefeie; € @y,
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3.1.7 Proposition: For each t € {O, ceey L%J} and uy,...,ul1,. ...l € {1, ...,k —m+ 1} such that

; oo t—1)+1
uj +m < wjpyand I +m < gy forall j € {1,..., ¢ =1}, 00 = "'trurZ(t—l)—i-lt?:( ) .Y €
a;.
Proof. Tt follows by definition that Gﬁt = t}it and from Proposition 3.1.4 that tl =1t (t 1)+1tlt m(t-1+1,
. A1 u; t—1)+1 i+1

Let j € {1,...,t — 1} and suppose GZJ:II l?‘ = t;l’ﬁl ) tm(t 1)+1tZL( ) ..t?_lil . In order to show

Uj,. ,u Ujp1,eus m(G—1)+1 _ uy m(t— 1)+1 m(j—1)4+1 .
that 6, 7, s equal to tm(j 1)+10l;+1, 1, ttlj =1yl tn;(t—l)-l—ltlt . , it

euJJrl, Lue m(j—1)+1
m,(] D417l 41,00 Tl

m(j—1)+1

is sufficient for us to show that the product t” joins and removes the lower

Ujgdseees Ut

, while also preserving: all m-apses in 91j+1;-~7lt

m-apsis of tumj( 1)1 and upper m-apsis of t

along with the upper m-apsis of t"" and lower m-apsis of t mE=1+1,

m(j 1)+1

euj_H, Suy m(j— 1)+1

When forming the product tg(j71)+l A

(i) the upper m-apsis {u;,...,u; +m —1} in tZZ(j , and the lower m-apsis {l;-, ol +m— 1)’}

~1)+

. i—1)+1
in )" =D+ are preserved;
J

Ut

(if) For each i € {1,...,myj}, it follows from the left-most m-apsis of 0, ”1’ 7, starting at min{u;1,

Uj41ye05Ut

I}, contains the vertical line {i,i’ }. Hence the lower

lj+1} and UJ'+1,lj+1 > mj that 6

m-apsis {(m(j — 1)+ 1),...,(mj)'} € tm(] 1)1 and the upper m-apsis {m(G—1)+1,...,mj} €

j—1)+1 . .
t;T_L(J )+ join and are removed; and
J

(iii) Since u; +m — 1 is the right-most vertex in the right-most m-apsis of tumj( for each i €

J—1)+1

{uj+m,....;k—m+1} t" has vertical lines {7,¢'}. Now u;11 is the left-most vertex in

m(j 1)+1

Ut

e lett-most upper m-apsis 1n ¢, ollows from w411 > u; +m— a e upper m-apses
the left t is i szff’ . It follows f it j 1 that th

n 6, fll L, “ are preserved. By an analogous argument the lower m-apses in 0, ”1’ Z“ are also
J
preserved.

Hence it follows that

QUi (Y Uittt m(j—1)+1 _ Y o e m(t— 1)+1 t171(3‘71)4»1

Ljyeesle 7 "m(G—=1)+1 141,00l L T 'm(j-1)4+1 7n(t—1)+1 It s :

ULy yut U1 Ut m(t—1)+1 1

Finally, by induction 6, ' =l b, STy O

3.1.8 Corollary: O C 4;".
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Sec 3.1: The m-apsis generated diagram monoid @}

. 3.6 3
Figure 3.8: 9;:? = 30%) = 3l € 5.

936] &/’ %

2,7

&8 &8
Il

D)
I

3.1.9 Definition: Given bipartitions «, 3 € Pj such that the number of upper m-apses in « is equal

>
~o =

o
N =

s
KN FNgoN —Co

(i
N =

to the number of lower m-apses in 3, we shall denote by 65 the m-apmorphism with precisely the same

upper m-apses as « and precisely the same lower m-apses as .

§ 3.1.4 Blocks that must appear

Our first step towards characterising the bipartitions that are elements of the m-apsis monoid @;" is to
establish which blocks must appear in all products of m-apsis generators.

3.1.10 Proposition: For each m € Z>3, k € Z>,,, with the exception of the identity, every element of

the m-apsis monoid @;" must contain at least one upper m-apsis and at least one lower m-apsis.

Proof. Trivially follows from upper non-transversals being preserved under right-multiplication along

with lower non-transversals being preserved under left-multiplication. O

Additionally, note that when k = m there is a single m-apsis generator containing exactly one upper
m-apsis and one lower m-apsis. Hence when considering all k € Z~(, no further conditions may be placed

on blocks that must appear in products of m-apsis generators.
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Chapter 3: Characterisations

§ 3.1.5 Feasible block types

3.1.5.1 Block types that do appear

In this subsection we seek to establish given m € Z>3 and k € Z>,,, for which combinations of u,y € Z>¢

such that u+ v > 0 do there exist products of m-apsis generators containing a block of type (u,~)?

Note a product of m-apsis generators must contain at least one upper m-apsis and at least one lower
m-apsis. Hence after excluding one upper m-apsis and one lower m-apsis to cover cases where k < 2m,
which is done implicitly from this point, blocks in a product of m-apsis generators may contain at most

k — m upper vertices and at most k — m lower vertices. Consequently we must have u,y < k — m.

For k = m the m-apsis monoid trivially consists of the identity and the single m-apsis generator a,
one way in which this may be seen is observing it is trivially the case that each m-apsis generator is

idempotent, ie. (a)* = a7 for all m € Zsg, k € Zsy, and i € {1,..., k —m+1}.

For k > m we have seen that m-apses, which satisfy {u,v} = {0, m}, and transversal lines, which have
1= =1, appear in products of m-apsis generators. To form an idea of which other combinations of p
and v do appear we proceed by examining block types that appear in products of triapsis generators for

smaller values of k greater than three:

(i) When k = 4 there are two triapsis generators, which generate gi = {id4, vl vl 2, t%} Since runs

contain only m-apses and transversal lines, no further block types appear;

(i) When k = 5 transversals appear of type (2,2), for example in the product ajaj as illustrated in
Figure 3.9. Hence for combinations of u,y € {0,1,2} such that u 4+ v > 0, blocks of type (u,~)

appear in elements of g§ when p = ; and

(iii) When k = 6 transversals also appear of type (3,3), for example in the product aja3a3a? as illustrated
in Figure 3.10. Hence for combinations of p,y € {0,1,2,3} such that u + v > 0, blocks of type

(11,~) appear in elements of @ when p =~ or {u,~v} = {0,3}.

Before examining when k£ > 7, at this point it is reasonable to conjecture that, given m € Z>3, k € Z>,

and p € {1,...,k — m}, there exist products of m-apsis generators containing a block of type (p, p).

3.1.11 Definition: Let o?,(c“’”) denote the planar bipartition consisting of:

(i) the upper m-apsis {1,...,m} containing the m left-most upper vertices;
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Sec 3.1: The m-apsis generated diagram monoid @}

Figure 3.9: Given m = 3 and k = 5, aja3 has a type (2,2) transversal.

e’
a e
a3 § ¥
¢« ¥

Figure 3.10: Given m = 3 and k = 6, ala3a3al has a type (3,3) transversal.

=W

¢« &

(ii) the lower m-apsis {(p+1)',...,(p+m)'};
(iii) the (w,p)-transversal {m+1,... m+pu,1’,... u'}; and
(iv) the vertical lines {j, 7'} where j € {u+m+1,...,k}.

For example given m = 3, wé2’2) € PPs is depicted in Figure 3.11.

Figure 3.11: Given m = 2 and k =5,

!

— S [PP5

¢« &

wé2,2)

We proceed by establishing in Proposition 3.1.12 that @,(C” e @;". The reader may find it useful to
refer to Figure 3.12 which illustrates that given m = 3, k € Z>,,, and A € {2,...,k —m}, LTJEC)\’/\) =
_(A—1,A—1

Wl(c )a§—1“§+1-

3.1.12 Proposition: For each m € Z>3, k € Z>,, and p € {1,...,k —m},

o

—(mp) _ 1 m .m m

W T Hai—lai+1 edy.
=2
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Chapter 3: Characterisations

Proof. That w,(j’” is equal to the run t} follows by definition. Let A € {2,...,u} and suppose that

,(,\ LA-1) _

2
13 Hl 5 6" a7t . Note that ay' jal’,; =idy—2 ® cu,(C /\)+2 consists of:

(i) two m-apses {A—1,...,A+m—2}and {(A+1),...,(A+m)'};

(i)

a (2,2)-transversal {\+m — 1, A +m, (A — 1), \'}; and

(iii) vertical lines {j,j'} where j € {1,..., A =2, A+m+1,...,k}.

m

When forming the product w)\ lap 195801

i) The upper m-apsis {1,...,m} in @1_! is preserved;
A—1

(ii) The lower m-apsis {(A+1)’,...,(A+m)} in a{’_,aY’,; is preserved; and

(iii) The vertical line {\ +m, (A +m)’} in @31 joins to the type (2,2) block {\+m —1, \+m, (A—1),

Therefore we have W,

A'}in af' jay ;, which joins to the lower m-apsis {X,...,(A+m —1)'} in (Dij, which joins
to the upper m-apsis {A—1,...,A+m —2} in a}* @} ;, which joins to the type (A — 1, A —
1) block {m+1,...,m+X—1,1,...,(A—1)'} in @, 1, which joins to the vertical lines {j,;'}
in a}"_jay’,; where j € {1,...,A —2}. This forms the block {m +1,...,m+\1,...,\'} when
collecting the upper vertices in the aforementioned blocks of wij along with the lower vertices in

the aforementioned blocks of ay ;aY’, ;.

AN —(A=1,2-1 A . . .
A w,(g ’ )a’;lflag\”ﬂ = 3 [[;,a™ e, and hence it follows by induction

that @ =} [T, e e, e A O
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Figure 3.12: Given m =3, k € Z>m, and A € {2,...,k —m}, cTJi,)"A) = w,(ckfl’kfl)ai’,laiﬂ.




Sec 3.1: The m-apsis generated diagram monoid @}

Next we seek to identify whether for any further combinations of u, vy € {0,...,k — m} such that u+~vy > 0,
there exist products of m-apsis generators containing a block of type (i, ). To do so we examine products

of triapsis generators when k > 7:

(i) When k = 7 the transversal types (4,1) and (1,4) appear, for example in the products @ja; and

3—4.
ayWy;

(i) When k = 8 the transversal types (5,2) and (2,5) appear, for example in the products @3a} and
a3w?; and
(iii) When k = 9 the transversal types (6,3) and (3,6) along with the non-transversal types (6,0) and
(0,6) appear, for example in the products @la3, a3, Wlatad and ajadwd.
At this point it would be reasonable to conjecture that for each m € Zs>3, k € Z>p, and p,vy €
{0,...,k —m} such that u+~ > 0 and g = v (mod m), there exist products of m-apsis generators that
contain a block of type (u,~).
3.1.13 Definition: For each m € Z>3, k € Z>p, and p,y € {0,...,k —m} such that g+~ > 0 and

=7 (mod m), let k = max {u,v} +m and let o?,i””) denote the planar bipartition that contains:

(i) for each j € {1, R Ei“}, the upper m-apsis {m(j — 1) +1,...,mj};

(ii) for each j € {1, ce E%}, the lower m-apsis {(y +m(j — 1) +1),...,(y +mj)'};
(iii) a type (k) transversal {k —p+1,...,k,1',...,7'}; and

(iv) for each j € {k+1,...,k}, the vertical line {j,j'}.

For example, given m = 3, 655’2) € PPy is depicted in Figure 3.13.

Figure 3.13: Given m =3 and k=9,

NS

¢« ¥ e & W

We proceed by establishing in Proposition 3.1.14 that w;" )

€ 4. The reader may find it useful to refer

to Figure 3.14 which illustrates that, given m = 3 and k£ = 12, (70582’2) = 6582’8)0;’”2.

3.1.14 Proposition: For each m € Z>3, k € Z>,, and p,y € {0,...,k —m} such that g+~ > 0 and

@ =~ (mod m),
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Chapter 3: Characterisations

— (1) gy +1y+m+1,. o p—mt+l .
W 97+1,’Y+m+1,...,u7m+1 if w>;

= (1Y) 1
= I ; .
e [ o alt, if p =; and

m+1,2m+1,...y—p+1 —(7,7) ;
Ot 2mt 1.yt 19k, if p <,

and hence @,&“’7) ea;.

Proof. We already established in Proposition 3.1.12 that if 4 = v then @* = ¢} [T, a’ € A

If p > ~ then when forming the product w,ﬁ“‘”&ﬁ}ﬁﬁﬁ,’jﬁ,’,’iﬁ

(s 1)
k

(i) the upper m-apsis {1,...,m} in & is preserved;

Hoft)

(ii) the lower m-apsis {(x+1)’,...,(p+m)'} in (TJI(C is preserved since it connects to the vertical

: oy v Ly L et , .
lines {7, 7'} in 077 Ty kT where j € {p+1,...,p+m};

Hoft)

(iii) the (w,7)-transversal {m +1,...,m+pu,1’,... '} in UT)](C connects to

(I) the m-apses {y+ (j —1)m+1,...,v+jm}in Gzi%xizi%ﬁ:mﬂ where j € {1, e %},
and

(IT) the lines {j,7'} in ﬂﬁ;’igﬂﬁ::ﬁﬁ where j € {1,...,7},

collectively forming the block {m +1,...,m+ pu,1’,...,4'}; and

(iv) foreach j € {u+m+1,...,k}, the vertical line {j,j'} in wé"’“) connects to the vertical line {7, j'}

in 97+1,'y+m+17.~,u—m+1
Y+1,y+m+1,...,p—m+1-

Hence LTJ,(C“W) = w%”ﬂﬂiimﬁﬁ:zﬂ € @, Tt follows analogously that if u < ~ then E),(C“"Y) =
m+1,2m+1,...,y—p+1 —(7,Y) m
Ot 2m1. y—pi1@y € A 0

3.1.15 Corollary: For each m € Z>3, k € Z>,, and p,v € {0,...,k —m} such that u+~v > 0 and

p =~ (mod m), blocks of type (u,7) do appear in some elements of the m-apsis monoid @}".

Proof. Trivially follows from Proposition 3.1.14 where we established that the well-defined bipartition

w,(j‘ ’7), which contains a block of type (p,7), may be factorised into a product of m-apsis generators. [
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Sec 3.1: The m-apsis generated diagram monoid @}

Figure 3.14: Given m =3 and k = 12,

N

—(8,2)
Wig

B EEEREEE

Il
L’ *
_(8,8)
Wig
®
036
¢ & o 6 ¥ o

3.1.5.2 Block types that must not appear

Given m € Zss, k € Z>y, and p,y € {0,...,k —m} such that u # v (mod m), it remains to establish

whether there exist products of m-apsis generators containing a block of type (u,7).

3.1.16 Proposition: For each m € Z>5 and k € Z>,,, the m-apsis monoid @' is a proper submonoid

of the planar mod-m monoid PM}".

Proof. Containment follows from m-apsis generators trivially sitting inside the planar mod-m monoid
P, that is o, ..., a5, € PM". Inequality trivially follows from (2, 2)-transapsis generators not

being elements of the m-apsis generated monoid @}.". O

3.1.17 Corollary: For cach m € Z>3, k € Z>,, and p,vy € {0,...,k —m} such that g # v (mod m),

blocks of type (i,~) do not appear in any elements of the m-apsis monoid @;".

§ 3.1.6 Bounding @]' above by @}’

3.1.18 Definition: For each m € Z>3 and k € Z>,,, we shall denote by g}f the set of all « € PM"

such that either:

(i) « is the identity idg; or

(ii) « contains at least one upper m-apsis and at least one lower m-apsis.

3.1.19 Proposition: For each m € Z>3 and k € Z>,, 4" is a monoid.

Proof. Closure under multiplication follows from:
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(i) the planar mod-m monoid PM;" being closed under multiplication; and
(ii) upper m-apses and dually lower m-apses being preserved under right-multiplication and left-
multiplication respectively.
O

3.1.20 Proposition: For each m € Z>3 and k € Z>,,, the m-apsis monoid @;" is a submonoid of g}f
Proof. We have already established that products of m-apsis generators must:

(i) sit inside the planar mod-m monoid; and

(ii) contain at least one upper m-apsis and at least one lower m-apsis.

Hence containment follows. O

§ 3.1.7 Building blocks

It remains to establish whether @Z‘ is equal to the m-apsis monoid @}, that is whether each element of
@L" may be factorised into a product of m-apsis generators. Before doing so, it will be convenient for us
to first identify some further well-defined elements and subsets of g}?, then show that they are contained

within the m-apsis monoid @;".

Both for the sake of succinctness and due to there being no notational ambiguity in doing so, when we

need to require p = v (mod m) and pu = k (mod m) we simply state that we require p = v = k (mod m).

Note that for each m € Z>3, k € Z>p,, and p,y € {0,...,k —m} such that g+~ > 0 and u = =
k (mod m), in order to be able to form a bipartition containing precisely one block of type (u,~) then

only m-apses, we additionally require that u = k (mod m), or equivalently that v = k (mod m).

3.1.21 Definition: For each m € Zx>3, k € Z>,, and p,y € {0,...,k —m} such that p+~v > 0 and

uw=~=k (mod m), let w,g“ ") denote the bipartition in @ containing:

(i) the type (u,7) block {1,...,pu,1",.... 9"}
(ii) for each j € {17 ok “}, the upper m-apsis {u+m(j —1)+1,..., 4+ mj}; and

(iii) for each j € {1, ey k%}, the lower m-apsis {(y+m(j — 1)+ 1),...,(y +mj)'}.
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Sec 3.1: The m-apsis generated diagram monoid @}

For example given m = 4 and k£ = 9, Figure 3.15 depicts wés’l) € @3.

Figure 3.15: Given m =4 and k =9,

2
wéS’l) = € a3

I

We proceed by establishing in Proposition 3.1.22 that w,(g“ M e @;". The reader may find it useful to refer

to Figure 3.16 which illustrates that, given m = 3 and k = 11, wﬁ’f’) = 0?’2’3@52175) ca,.

105

3.1.22 Proposition: For each m € Z>3, k € Z>,, and p,y € {0,...,k —m} such that 4+~ > 0 and

uw=~=k (mod m),

(1Y) _ putlptm+1,u+2m41,. k—m41—(p,y) m
Wy =0 1,/1,+m+1,/1,+2m+1,...,k—m,—i—lwk € gk .

Proof. Let k = max {u,v} +m and recall that for each j € {E +1,..., k}, (fo”ﬁ) contains the vertical
line {j, j'}.

u+1,u+m+17u+2m+1,~-7k—m+1w(uﬁ).

When forming the product 6 it md 4 2mA1, k—m+1 P

(i) the type (p,7) block {1,...,u,1’,...,7'} in (fo”ﬁ) connects to the transversal lines {j, (m + j)'} in

9u+1,,u+m+1,,u+2m+1,...,kferl

Vbt it 2m41, . k—my1 Where j € {1,...,u}, forming the type (u,~) block {1,...,pu,1",...,

/.
s
. . 1 1 p+2m+1, . k—m+1 . : ,
(i) the upper m-apses in g*F [ /mrrnrEEmEL- b which are upper m-apses in w7 are pre-
served;
. . 1 1u+2m+1,.. k—m+1 . :
(iii) the lower m-apsis {1’,...,m'} in 9“"'1”/11::;:1”5:2;::1”'H”,fi::il and upper m-apsis {1,...,m} in

cTJ,(C’L ) join and are removed;

(iv) for each j € {1,...,%%}, the lower m-apsis {(k + m(j — 1) + 1),...,(k + mj)'} from the

p+1,u+m~+1,u4+2m+1,... . k—m-+1

(ps7)
1,pu+m+1,u+2m+1,....k—m—+1" k

m~apmorphism 6 which joins to vertical lines in & , is preserved;

v) for eac S E—u the upper m-apsis {u+m(y—1)+1,..., u+mj}in w; " and the lower
(v) f h j {2, ,km“}, he upp psis {p+m(j—1)+1,..., p+mj} in @ and thel
meapsis {(;+m(j—1) +1), ..., (uermg)}in g% e e i join and are removed;

and

m

(vi) for each j € {1, ce %_7}, the lower m-apsis {(y + m(j — 1)+ 1),...,(y + mj)'} in w}g“’”) is

preserved.
(7)) _ pp41p+m+1,p+2m+1,.. k—m+1—(p,7) m
Hence w;, =0 bl it 2mAt ket 1 Ok e a,. O
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Figure 3.16: Given m =3 and k = 11,

(2,5)
Wi

3 ¢

38 ¢
3t 3¢

—(2,5)

§ 3.1.8 Transversal building blocks

We now turn our attention to bipartitions in @} where non-transversals must be m-apses.

3.1.23 Definition: For each m € Zs3 and k € Zs,,, let T;" denote the set of all @ € @ such that

every non-transversal b € « is an m-apsis. We shall refer to elements of T}" as transversal building blocks.

We proceed in this subsection to establish that T}" is contained within the m-apsis monoid @;". In order
to do so we partition T}’ based on transversal types from left to right then establish our desired result

inductively.

Note that for each m € Z>3, k € Z>p, 7 € {0,...,k—m}, and p1,..., by, Y1,---, % € {1,...,k —m}
such that p; = 7; (mod k) for all j € {1,...,r} and X7_u;, 37 _;9; < k —m, in order to be able to
form a bipartition of rank r with a distinct block of type (p;,7;) designated for each j € {1,...,r}, we
additionally require that 37_,p; = & (mod m), or equivalently that %7_,7; =k (mod m).

3.1.24 Definition: For each m € Z>3, k € Z>y,, v € {0,...,k—m}, and p1,..., e, Y15, €
{1,...,k —m} such that p; =~; (mod k) for all j € {1,...,7}, ¥, 57 19 <k —mand X}_ pu; =

k (mod m), let I;@”l’%)"“’(’“m) denote the set of all w € T} such that w contains precisely:

(i) k=X5_1 1y

p— upper m-apses;

N kXTI _ v,
(i) —2Z++ lower m-apses; and

(iii) r transversals of type (p1,71), «, (ttr,¥-) from left to right.
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Note that by definition T}' = J re{0,... . k—m} E,&“lm)"”’(”"’%).

A yees s V1o Y €{1,...,k—m}
pj=v; (mod m) V je{l,...,r}
E;:l,uj,E;:{ngk—m
2i_1u;=k (mod m)

Next we seek to establish whether E,(gm’%)"”’(““%) C @;". We begin by establishing in Proposition 3.1.25
that for each w € Eé”l"“)"”’(““%), each element of Eé”lm)’”"(““%) may be factorised into a product
containing w and m-apmorphisms. An example of the method outlined for factorisation is depicted in

Figure 3.17.

3.1.25 Proposition: For each w € I,(CM’M)"“’(““%), EECMM)’“"(”“%) C O7woer.

Proof. Let ¢ € E,(cm"“)"”’(““%). Since v and 9 have the same number of upper m-apses as well as the

¥

same number of lower m-apses, both of the m-apmorphisms 6

. and 9:;* are well-defined. When forming

the product 6. w9;‘/j* :

(i) the upper m-apses in Hff*, which are identical to the upper m-apses in v, are preserved;
(ii) the lower m-apses in 0«"  which are identical to the lower m-apses in 1, are preserved;
(iii) the upper m-apses of w and lower m-apses of Hf* join and are removed;
(iv) the lower m-apses of w and upper m-apses of 05* join and are removed; and

(v) each of the upper vertices in the transversals of w connects to a transversal line of Gf*, and each of
the lower vertices in the transversals of w connects to a transversal line of #%", consequently block

types of transversals are preserved.
Hence 1 = 6%.w0%", consequently C,(c’“’vl)"”’(“”%) C O7'wop. O

3.1.26 Corollary: If the intersection of C,(C“I’Wl)""’(”’"’%) with the m-apsis monoid @} is non-empty

then ¢](€#1,’Yl)v---’(#rﬁr) g g;cn

Proof. Suppose there exists w € E,i“l’%)"”’(”r’%) N @}, then it trivially follows from Proposition 3.1.25

that TP W) € groer C ay', O

3.1.27 Proposition: For each m € Z>3, k € Z>y, 1,y € {1,...,k —m} such that 4 = v =k (mod m),

Il(cu-ﬁ) c gz@_

79



Chapter 3: Characterisations

Figure 3.17: Given m = 3,

% %
(G
S S

I

) L’ L !
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Proof. Tt follows by definition that w,(c’“’) € E,(C“’W) and we established in Proposition 3.1.22 that w,g“ M e
@}, hence w,i“’"’) € CEC’L’A’) N@}". Finally, employing Corollary 3.1.26 we have C;’L’A’) cay. O

3.1.28 Definition: For each m € Z>3, k € Z>y,, v € {0,...,k—m}, and p1,..., e, Y15, €
{1,...,k —m} such that p; =~; (mod k) for all j € {1,...,7}, ¥ 0,57 19 <k —mand X}_ pu; =

k (mod m), let w,i“l’”)"“’(““%) denote the element of I;@”l’%)"“’(““%) containing:

(i) the type (p1,7v1) transversal {1,..., 1,1, ..., v };

kiz;:l Hj
m

(ii) for each j € {1, R }, the upper m-apsis {pn +m(j — 1)+ 1,..., 41 + mj};

k725:17j
m

(iii) for each j € {1, ceey }, the lower m-apsis {(y1 + m(j — 1)+ 1),..., (1 + mj)'};

(iv) for each j € {2,...,r}, the type (u;,7;) transversal {k—Z;’zjui—i—l, e k=30 s (B =20y +

1), ..., (k- E;;j+17i)/}7

(1,71) e s (B Y

and let v,/ ) denote the element of I;’“’%)’”"(““%')

containing:

k*Z;‘:U’«j
m

(i) for each j € {1, R }, the upper m-apsis {m(j — 1)+ 1,...,mj};

kiz;“:l’}/j
m

(ii) for each j € {1, ey }, the lower m-apsis {(m(j — 1)+ 1)/,...,(mj)'};

(iii) for each j € {1,...,7}, the type (u;j,7;) transversal {k—%7_ pu;+1,..., k=0 pi, (h=30_ v+

=]
1), ..., (k- Z;;j+1'7i)/}'
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Figure 3.18: Given m = 3,

1,4),(1,1),(4,1 1,4),(1,1),(4,1
w§2)( L FU A c( e

1,4),(1,1),(4,1 1,4),(1,1),(4,1
U§2)( )>(4,1) m ?E( )>(1,1),(4,1)

For example given m = 3, w§§’4)’(1’1)’(4’1),Ug’4)’(1’1)’(4’1) € 552’4)’(1’1)’(4’1) are depicted in Figure 3.18.

We proceed by establishing that for each m € Z>3, k € Z>p, 7 € {0, ...,k —m}and p1, ..., fr, 1, .., Ve
€ {1,...,k—m} such that p; = v; (mod k) for all j € {1,...,r}, X5_,pu;,¥7_1v; < k —m and

Yi_ipj =k (mod m),

( 1, ) 3 : ( ) )7'”7( T r) .
B s () (Ekiz’?:zuj @ ldz'}':z”j)(ld“fl @Ezf—z{f? P = s
k

(idul @I](:'LQ;L’IZ)N"’(MTW’YT )(I](Cﬂli?:l . @ id2§:2’”) 7 S 1.

(4 1),(1,1),(1,4) _ (w(4,1) ® idg)(idl ® Uﬁ,l),(l,4))

€ 0:52’ D09 and Figure 3.20 illustrates that w§1 DD = (id; @ vlg 1))(“)51 D &id, ) € (1 7)’(7’1).

For example, given m = 3, Figure 3.19 illustrates that w;

3.1.29 Proposition: For each m € Z>3, k € Z>pm, 7 € {0,...,k—m}, and p1,..., 1, 71,..., % €
{1,...,k —m} such that p; =~; (mod k) for all j € {1,...,r}, ¥ 0,57 19 <k —mand X}_ pu; =
k (mod m),

(11571 ) 5oy (fr ¥ (wl(cmgrl)z ,© id2§:zuj)(id71 ® UI(CPEV’YZ) ..... (Mm)) Bz i
wp, =

(id’ul o v](g,‘f/;’;{z)w-,(ﬂrﬂr))(wl(cu_lz’glL &3} 1d2J 2,\/]) J251 < Y1-

Proof. Suppose p11 > 1. Note that since k > X7, pu; +m > v + X _ou; + m we have:

(i) k—X%_op; > py +m = max {u1, 11} + m, ensuring wi?’ilé’}l:)zuj is well-defined;

(12,72) o5 (oY) s

(i) k=1 —m = Xl _op;, X%_o7;, ensuring vy

is well-defined; and

(p1,71)

k—y1—%7 i . . .
i) %, which is both the number of lower m-apses in w, 'y " and the number of upper
e

(iii

(12,72) 50005 (Hryyr)

m-apses in v , is a positive integer.

81



Chapter 3: Characterisations

k=" k—v1—2"_ i k—=X"_ v .
Let t* = ;1—1”7 b= mJ—zm e = %—17’ € Z~o. When forming the product (w,(c‘fgrl)wj P
ok

idsr_ ) (idy, @ 272 (7)),

(11,71)

(i) for each j € {1,...,t*}, the upper m-apsis {1 +m(j — 1) + 1,..., 1 + mj} in w3 oy 8
.

preserved;

(ii) for each j € {1,...,t.}, the lower m-apsis {(v1 + m(j — 1) + 1),...,(y1 + my)’'} in id,, &

(m2,72)5es (s yr) .
(he is preserved;

(iii) for each j € {1,...,t}, the lower m-apsis {(v1 +m(j —1)+1),...,(y1 +my)'} in w,i“_lz’:’yr_l)wj and
=

(12,72)50 o5 ()

e join and are removed;

upper m-apsis {y1 +m(j —1)+1,...,71 +mj} inid,, v

(iv) the transversal {1,...,pu1,1’,...,71} in w,(c’ilgrl )QM is preserved since it joins to the vertical lines in
ok

id,;; and

(v) foreach j € {2,...,r}, the transversal {y; +mt+Zj;21ui+1, e —|—mt+2z:2uj, (mt, —i—Zg;llfyj +

(2

1., (mte +2_1y;)} inid,, @ v,(ffv’;m)"”’(“"’%') is preserved since it joins to the vertical lines

{Z, l/} in w](clili’g'lz)zl—tj EB id2§:2ﬂj Where l c {’)/1 + mt + E‘Z;Ql/,éz —|— 17 cees M —|— mt —|— EZ:2LLJ}

Hence w,i”l’%)"“’(““%) = (w,i“_lgl )zuj Gidsr_, ;) (idy, o272 )y “The case when iy < 4y follows
j —alt

k=1

analogously. O

Figure 3.19: Given m = 3,

4,1),(1,1),(1,4
w§2 ),(1,1),(1,4)

¢« ¥ e & ¥

LA L

HRESEBEREE,

e ¢ & o & &

w%’l) @ ids

id, @ ofy Y

3.1.30 Proposition: For each m € Z>3, k € Z>py, © € {0,...,k—m}, and p1,..., 0,71, -, % €
{1,...,k —m} such that p; =~; (mod k) for all j € {1,...,r}, ¥7_,u;, 5% _19; <k —mand X7_ pu; =

k (mod m), we have E,(CM’M) """ (rr) a.
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Sec 3.1: The m-apsis generated diagram monoid @}

Figure 3.20: Given m = 3,

N

(1,7),(7,1)
Wi
¢« &
I
e’
idl ©® Ufg’l)
wﬂj) @ idy

« v

Proof. If r = 0 then we trivially have k € mZ~( and If = {w,(cm’o)} C @;", where w,(cm’o) was described
in Definition 3.1.21 and established as an element of the m-apsis monoid in Proposition 3.1.22. If r =1

then we already established in Proposition 3.1.27 that T C @y,

If r > 1 then let 7 € {2,...,r}. Suppose py >~ and let k = k — Y ;a4 . 1t follows from E;’f’g}_)zw C

. . . s (11,71) ;
ZL_E;_:ZW, as was established in Proposition 3.1.27, that wk—IZ;.l:zw @idgr ., € a;.

(B2,72),- o, (17 v7) m - : (2,72) 505 (o y7) m (B1571) 505 (myye)
Suppose IE7% C gk_% giving us id,, ® Vi € 4;', then w =

(wgili’%l:)?#j @idﬁfzzuj)(id’h @Ugi{;’lvz)wu(ltﬂ%)) c ggl mz[]({blﬁh) ~~~;(HF,'YF). Therefore g%n ﬁt(;lﬂfl),...,(#?,"/r)

is non-empty, employing Corollary 3.1.26 we have I(E‘“’M)"”’(W’%) C @7". It follows by induction that

El(cﬂly“/l) ----- (#r,’Yr) g gm

The case when py < v; follows analogously using the second half of Proposition 3.1.29. O

3.1.31 Proposition: For each m € Z>3 and k € Z>,,, T' C 4"

Proof. Recall that by definition T} = | 10, k—m} C,(Cm"“) """ (”T’%), hence it follows from

H1seeo Y15 Yr €{L,0 k—m}
ri=v; (mod m) V je{l,....,r}
Ej':lﬂszgr‘:l'ﬁgk_m
Ei_1u;=k (mod m)

Proposition 3.1.30 that T} C @;". O

§ 3.1.9 Non-transversal building blocks

We now turn our attention to bipartitions in @',’f where transversals must be lines, and either lower

non-transversals or upper non-transversals must be m-apses.
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Chapter 3: Characterisations

3.1.32 Definition: For each m € Z>3 and k € Zx,,, let U} denote the set of all o € 72” such that

every:

(i) transversal in « is a line; and

(ii) lower non-transversal in « is an m-apsis,
furthermore let £7" denote the set of all « € ﬁ}g’ such that every:

(i) transversal in « is a line; and

(ii) upper non-transversal in « is an m-apsis.

We shall refer to elements of U} as upper non-transversal building blocks, and elements of £} as lower
non-transversal building blocks. By a non-transversal building block we shall mean an upper or lower

non-transversal building block.

We proceed in this subsection to establish that both U7" and £;7" are contained within the m-apsis monoid
@;'. Containment of £7" will trivially follow from containment of U}'. In order to establish the latter
containment, first we partition Uy based on the number of upper non-transversals that are not m-apses,

then we establish our desired result inductively.

Note that L%J is the maximum number of upper non-transversals an element of 1" may contain, however

in such a case at least one upper non-transversal must be an m-apsis, hence Uj" may contain at most

Lk_TmJ upper non-transversals that are not m-apses.

3.1.33 Definition: For each z € {0, ceey kamJ }, let U, denote the subset of all bipartitions n € U}

m

such that n contains precisely  upper non-transversals that are not m-apses.

k—m
Note it follows by definition that U, = ©7* and that U} = UL =] u

=0 x*

3.1.34 Definition: For each = € {1, ey VC_TmJ} and 1 € U_, by definition there exists:

(i) p € mZsp and b= {b1,...,b,} € n, where by,...,b, € {1,...,k}, such that p <k —m, bis a type
(1, 0) non-transversal that is not an m-apsis and no upper non-transversals of 7 pass underneath

b;

(i) 7 €{0,...,b1 — 1} and ry € {0,...,k — b, } such that the number of transversal lines in 7 whose

upper vertex sits to the left or right of b € ) is 1 and ro respectively; and
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Sec 3.1: The m-apsis generated diagram monoid @}

(iii) upper vertices uq,...,up, € {1,...,01 — 1}, Up 41, ., Ur,4r, € {by + 1, ..., k} and lower vertices

liyo ooyl 4y € {1,...,k} such that for each j € {1,...,r1 + r2}, n contains the transversal line

{uj, 1}

(1,0)
k—’l‘l —T2

(1,0)

e Let w, denote id,, ® w Ky —1g

@ id,, where w was outlined in Definition 3.1.21 and shown

to be an element of the m-apsis monoid Q,T_rl_rz in Proposition 3.1.22; and
o let n~ denote the upper non-transversal building block in U_,_; containing:

(i) excluding b, the upper non-transversals of 7;
(ii) for each j € {1,...,u}, the transversal line {b;, 1 + j};
(iii) for each j € {1,...,r1}, the transversal line {u;, j'};
(iv) for each j € {1,...,r2}, the transversal line {u;, (k —rs + j)'}; and

(v) foreachyj € {1, ey W}, the lower m-apsis {(r1+u+m(i—1)+1), ..., (r1+p+mj)'}.

Figure 3.21 contains an example of w, and n~ for m = 3, £ = 13 and a given n € U;.

Figure 3.21: Let m =3, k = 13.

Uy Uz by by Uz U4

Given n = \ // ey,

as outlined in Definition 3.1.34, we have ry = ro = 2 and:

v’ Y’
€U, = 03,; and
¢« ¥ e & W

L2 LR
RN R EERE

=idy P wé&O) ®ids € gig

We proceed to establish that each U,, is contained within the m-apsis monoid @;". To do so we will show
that each n € U, where z € {1, ey Lk_TmJ }, may be factorised into the product n_wn@;", an example

of which is depicted in Figure 3.22.
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3.1.35 Proposition: For each m € Z>3, k € Z>,,, and z € {0, . LIC*T’”J }, u, Car.

Proof. By definition U, = ©}* and we established in Proposition 3.1.7 that ©7* C @, hence U, C 4.

Let « € {1,...,[5|} and suppose U,_; C @;". For each n € U, as previously noted in Definition

3.1.34, by definition there exists:

1) p € mé~o an ={by,..., € n, where by,...,b, € 11,...,k}, suc at ¢ < k—m, bis a type
i 7 db b by here b by 1 k h that © < k bisat
M, non-transversa al 1S NOoU an m-apsis and no upper non-transversals OI 77 passS undernea
0 t 1 that i t i d t Is of d th
b;
1) 71 S yeeey01 — and 1o € ge ey — suc a € numbper o ransversal lines in whnose
ii 0 by — 1} and 0 k—b, h that th ber of t 1 lines in 1 wh

upper vertex sits to the left or right of b € n is r; and ry respectively; and

(iii) upper vertices uy,...,up, € {1,...,01 — 1}, Up 41, ., Ur,4r, € {by + 1, ..., k} and lower vertices

Iy ooyl 4y € {1,...,k} such that for each j € {1,...,71 + r2}, n contains the transversal line

{uj’lj}'

Note w;, and 7 both have ki‘“m# lower m-apses, hence the m-apmorphism H; " is well-defined. When

forming the product n_wné':,} m

(i) the upper m-apses in 1~ are preserved, which are identical to the m-apses in 7 after excluding b;

(ii) b is formed by the p-apsis {r1 +1,...,r1 +pu} € w, joining to each of n~’s transversal lines

{bj,r1 +j} where j € {1,...,u};

s

(iii) the lower m-apses in 9;) 7, which are identical to the lower m-apses in 7, are preserved;

(iv) for each j € {1,...,16_“_%}, the lower m-apsis {r1 + p+m(j—1)+1,....,r1 +pu+mj} en”

and the upper m-apsis {(r1 + g +m(j — 1)+ 1)',...,(r1 + g +myj)} € w, join and are removed,;

(v) for each j € {1,..., k_’%}, the lower m-apsis {r1 +m(j —1)+1,...,71 +mj} € w, and upper

meapsis {(ri +m(j — 1) +1),...,(r1 + mj)} € 6" join and are removed;

(vi) foreach j € {1,...,71}, the transversal line {u;, l;} is formed by the lines {u;, j'} € n=, {4, 7'} € wy,

and {j, lg} € 6, joining; and

(vii) for each j € {k—ra+1,...,k}, the line {uj,l;} is formed by the lines {u;, (k —r2+j)'} € n~,

{k—ro+j,(k—r2+4+7j)} € wy, and {k — 19+ 7, l;} € 9:,); joining.
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Sec 3.1: The m-apsis generated diagram monoid @}

Hence n = n*wn&u;; € @;". It follows by induction that U, C @} for all z € {0,..., [ =]} O

Figure 3.22: Given m = 3, k = 13 and n € U; from Figure 3.21,

N

I

s

n
SEEEE

wy = idy P wéB’O) @ ido
* Xy 3 O

0"

& & 6§ ¥ § &

3.1.36 Proposition: For each m € Z>3 and k € Zx>,, W', 27" C A",

kE—m
Proof. U} = Lg’ | U, C 4;". Containment of £} may be established in a dual fashion to U}*, or more

x

succinctly by noting that £} = (U")* C @} O

§ 3.1.10 Factorising elements of the m-apsis monoid 4}

To establish that the m-apsis monoid @} is in fact the monoid ﬁ}cn, which will bring our characterisation
of the m-apsis monoid @} to a conclusion, it remains for us to establish that each element of @,f is a

product of m-apsis generators.

We will reach our desired conclusion by establishing that each element of @L” may be factorised into a
product containing an upper non-transversal building block, a transversal building block and a lower

non-transversal building block.
3.1.37 Definition: For each m € Z>3, k € Z>,, and o € @C’L:
e let u, denote the upper non-transversal building block containing;:

(i) the upper non-transversals in «;
(ii) the vertical line {j,j'} for all j € {1,...,k} such that j is an element of a transversal in «;

(iii) lower m-apses containing the remaining vertices,
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o let t, denote the transversal building block containing:

(i) the transversals contained in «;

(ii) m-apses replacing the non-transversals in «, and
e let [, denote the lower non-transversal building block containing;:

(i) the lower non-transversals contained in «;

(ii) for each j € {1,...,k} such that j’ is an element of a transversal in «, the vertical line {3, j'};

(iii) upper m-apses containing the remaining vertices.

Figure 3.23 contains an example of u,, t, and [, for a given o € @?6.

Figure 3.23: Let m = 3 and k = 16.

NS EEE RN EEEEE,

Given a = € @3,
the transversal and non-transversal building blocks constructed from
« as outlined in Definition 3.1.37 are:

NS EEREEREEEEE

(i) Ue = € u?ﬁ;

¢« ¥ e & & ¢« ¥ e & ¥
NS A LR

.o _ 3 .
(ii) to = €T;

¢« ¥ e & ¥ « ¥
LR NS4

(ifi) lo = €Ll

R EEEEEEEE

3.1.38 Theorem: For each m € Zs>3 and k € Z>,,, the m-apsis monoid @} is equal to the monoid @}".

Proof. We already established in Proposition 3.1.20 that the m-apsis monoid @} is contained within @}c”.

Conversely for each a € @Z’, when forming the product ustals (see Figure 3.24 for an example):

(i) the upper non-transversals in u,, which are identical to the upper non-transversals in «, are

preserved;
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Sec 3.2: The crossed m-apsis generated diagram monoid X@;"

(ii) the transversals in ¢,, which are identical to the transversals in «, are preserved as they join to

vertical lines in both u, and [, by construction;

(iii) the lower non-transversals in [,,, which are identical to the lower non-transversals in «, are preserved;

and

(iv) the lower m-apses in u, and upper m-apses in t, join and are removed, similarly with the lower

m-apses in t, and upper m-apses in [.

Hence a = uqtala, giving us AP C UPTLT C A} O

Figure 3.24: Given m =3, k =16 and o € Q?G from Figure 3.23,

BN NN,
R R ERE

e 2y s BEEEE
O OO0 oD O
6§ ¢ & § ¢ 6§ ¢

B 3.2 The crossed m-apsis generated diagram monoid X4}"

3.2.1 Definition: We shall refer to the join of the m-apsis monoid @;" and the symmetric group S as
the crossed m-apsis generated diagram monoid, or more succinctly as the crossed m-apsis monoid, and

shall denote it as X@}".

m

3.2.2 Proposition: The crossed m-apsis monoid X@;" is equal to the set of all bipartitions o € M}
such that either o € S or « contains at least one upper and at least one lower non-transversal that each

contain precisely m vertices.

Proof. Let XA denote the set of all bipartitions o € M} such that either o € Sg, or « contains at least

one upper and at least one lower non-transversal that each contain precisely m vertices.

89



Chapter 3: Characterisations

It follows from Proposition 2.4.15 that X@;" = Sx@;'S,. That X} is a monoid follows trivially from
upper non-transversals being preserved when multiplying on the right, and from lower non-transversals

dually being preserved when multiplying on the left. O

Note that when m > 3 and k& > 3m, taking the meet of the crossed m-apsis monoid and the planar
partition monoid does not get us back to the m-apsis-monoid (see Figure 3.25 for an example of a planar
clement of X@; that is not an element of @;). Within this thesis, the m-apsis monoid @}" is the only
submonoid of the planar partition monoid that is not equal to the meet of the planar partition monoid

with the join of the symmetric group and itself.

Figure 3.25: A planar element of ng that is not an element of gg.

AT AT

IR

B 3.3 The planar modular partition monoid PM}"

Recall from Definition 2.4.45 that the planar mod-m monoid P} is the set of all planar bipartitions
a € PPy, such that for each block b € «, u(b) = I(b) (mod m). In this section we establish generators for

the planar mod-m monoid PM;, our objective will be obtained with the following approach:

i) First we consider the bipartitions that sit inside the planar mod-m monoi at are no
i) First ider the bipartiti that sit inside the pl d id PM;" that t
products of m-apsis generators, that is consider the bipartitions PM]" — @;" along with known
generators of the planar partition monoid PPj, which is equal to the planar mod-1 monoid [lel%’[,lC

by definition;

(ii) Second we bound the planar mod-m monoid [ijlkm below by conjecturing a sufficient generating

set based on our characterisation of the m-apsis monoid @}'; and

(iii) Finally we establish equivalence between the planar mod-m monoid PM]" and our lower bound
[PMZL in an analogous fashion to how we established equivalence between the m-apsis monoid @}

and our upper bound ﬁZ‘.

Note that this was the approach originally taken by the author to identify a generating set for the planar

mod-m monoid PM}". If he had been familiar with the work of Kosuda [40, 42, 43] one would have likely
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Sec 3.3: The planar modular partition monoid P}’

guessed the same generating set, though the bulk of our characterisation would have remained original.

§ 3.3.1 Bounding P#;" below by PM;"

Recall that when m € Zx3, the m-apsis monoid @' consists of all bipartitions o € P such that «
contains at least one upper m-apsis and at least one lower m-apsis. When generating the planar mod-m
monoid PM}", at each step we need to lose the restriction that the bipartitions we may genearate must

contain at least one upper m-apsis and at least one lower m-apsis.

Further recall that our first step when characterising the m-apsis monoid @;" was to, for each m € Z>3,
k € Z>y and p € {1,...,k—m}, establish a well-defined product of m-apsis generators containing a block
of type (i, ). The analogous step for characterising the planar mod-m monoid PM}" will require for
each m € Zsg, k € Z>,, and p € {1,...,k}, to establish a well-defined product of generators containing

a block of type (u, p).

The reader may be able to recall that:

(i) the monoid of planar uniform block bijections Fy, which is generated by (2, 2)-transapsis generators,
consists of all planar diagrams « € PPy such that each of a’s blocks is uniform, that is u(b) = I(b)

for all b € «; and

(ii) Halverson and Ram [33] gave a presentation of planar partition monoid PPy, which is by definition
the planar mod-1 monoid P}, showing that it was generated by (2,2)-transapsis generators and

monapsis generators.

Furthermore, it may trivially be checked that PM2 — @3 = {t;}. Based on the information we have
now established, it is reasonable to conjecture that the planar mod-m monoid may be generated by the

(2, 2)-transapsis generators, the m-apsis generators and the identity bipartition.

3.3.1 Definition: Given m € Z>q and k € Z>,,, we denote by PM)" the monoid generated by:

(i) the (2,2)-transapsis generators {t; : j € {1,...,k—1}};
(i) the m-apsis generators {aJ* : j € {1,...,k —m+1}}; and

(iii) the identity bipartition idy.
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The remainder of Section 3.3 will be spent establishing that the planar mod-m monoid PM}" is generated

by the (2,2)-transapsis generators, the m-apsis generators and the identity bipartition, that is PM;"' =
m

P

§ 3.3.2 Monapmorphisms

Recall from Subsection 3.1.5 that the m-apmorphisms ©}" are the set of all planar bipartitions 6 € PPy

such that each block b € 0 is either an m-apsis or a transversal line.

We established in Proposition 3.1.7 that for each m € Z>5 and k € Z>,,, the m-apmorphisms ©}" are
contained in the m-apsis monoid @', from which it trivially follows that the m-apmorphisms ©}" are

also contained in the planar mod-m monoid PM;".

When m = 1, recall that the monapsis monoid g,lg is trivially isomorphic to the join-semilattice of subsets
of {1,...,k} under a} — {i} for all i € {1,...,k}. It follows by definition that ©L = PZS}, which for

each m € Z>5 does not contain the monapmorphisms 0} = PZSy, that is ©} = PZS;, ¢ 4}".

To establish that O}, = PZS, C PM]" we will establish that each generator of PZS) may be formed as
a product of generators for P, The reader may find it useful to refer to Figure 3.26 which illustrates

that for each k € Z>o and i € {1,...,k — 1}, f; = fi+1tia} and b; = alt;b; 1.

3.3.2 Proposition: For each k € Z>5 and i € {1,...,k—1}:

1 S L.
Qi i =k;

fipitial = aj (H;:k_l a%ti) i<k, and

1 P — L.
a; Z*ka

k-1 .
a%tibi+1 = (Hj:i a}ti) a,1€ i< k.
Proof. When forming the product f; Htia%:

(i) for each j € {1,...,i — 1}, a},4, t; and a; all contain the vertical line {j,;'}, which trivially join
and form the vertical line {j, j'} € f; | tia};

ii) the upper monapsis {k} € f,,; and lower monapsis {i} € a! are preserved;
i+1 )

(iii) the vertical line {i,4'} € f;,; joins to the (2,2)-transapsis {4,7 + 1,4, (i + 1)’} € t; which joins to

the transversal line {i + 1, (i + 1)’} € a}, forming the transversal line {4, (i + 1)’} € ;| t;a}; and
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(iv) for each j € {i+2,...,k}, the line {j — 1,5’} € f,,, joins to the line {j, j'} € t;, which joins to the

vertical line {j, j'} € a!, forming the line {j — 1,5’} € f,, t;a;.

Hence letia} = f;. It follows by induction that fiﬂtiazl = a,lC (H;:kilalti). That b, = alltialﬂ_1 =

K2

(Hf;l a}ti> ai. follows dually. O

Figure 3.26: For each k € Z>o and i € {1,...,k — 1},

. o . [ ]
fi b;
° eoe coe s °
I

° . Y ) °

fiy1 aj
XTI ) LI ®

t; t;

'y ' Y
al b1

o o ° A

3.3.3 Corollary: For each k € Zso, O} = PZS;, C %}C

Proof. When k = 1, we trivially have ©1 = PZS; = {idy,a}} = PM;. When k > 1, ©} = PZS, C P,

trivially follows from Proposition 3.3.2 when recalling that:

(i) PZSy is generated by {id;ﬁfi,bi cied{l,....,k— 1}}; and

(if) %}C is generated by {idk,ti,a},a,lc ried{l,... k- 1}}

§ 3.3.3 Generating feasible block types

3.3.4 Definition: For each m € Zsg, k € Z>,, and u,y € {0,...,k} such that 4+~ > 0 and
p =7 (mod m), let k = max {u,~} and let wé“ ") denote the bipartition in the planar mod-m monoid

PM;" containing:
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Chapter 3: Characterisations

(i) the type (u,7) transversal {1,...,u,1,....7"};
(ii) for each j € {17 R %}, the upper m-apsis {u+m(j —1)+1,...,u+mj};
(iii) for each j € {1, ce E%}, the lower m-apsis {(y+m(j — 1) +1),...,(y+mj)'}; and

(iv) for each j € {k+1,...,k}, the vertical line {j,j}.

For example, given m = 2, (Dg’& € [ijg is depicted in Figure 3.27.
Figure 3.27: Given m = 2 and k = 8,
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We proceed by establishing in Proposition 3.3.5 that @\*") e PM". The reader may find it useful to

refer to Figure 3.28 which illustrates that, given m = 2 and k = 10, UJ%Q) = wﬁ%@)ag;g;;

3.3.5 Proposition: For each m € Zsg, k € Z>,, and u,y € {0,...,k} such that 4+~ > 0 and

w =+ (mod m),

(o) gyl y+matl, e p—mtl '

“k 97+177+m+17---7u—m+1 if > y;
=) _ 1 .
AU R if = ; and

ptlptm4d,.y—m+1—(v,y) .
Ot utma1) Iy —m1 Pk if p <,

and hence LT);C'U”’Y) c pMm.

Proof. If u =~ then we trivially have (IJ,(CM”Y) = Hé:ll t; € P

If p > ~ then when forming the product w,ﬁ“‘”&lﬁﬁﬁﬁ,’jﬁ,’,’iﬁ

(esp)
k

(i) the (w,~y)-transversal {1,...,u,1',..., '} in @ connects to the m-apses {v+ (j —1)m+1,...,

v+ jm} in 931}31$i}ﬁ:ﬂ1} where j € {1,...,2=2} along with the vertical lines {j, 7'} in

HziiziziiZ:Zﬁ where j € {1,...,7}, collectively forming the block {1,...,pu,1’,...,7}; and

Hoth)

(ii) for each j € {u+1,...,k}, the vertical line {4, '} in (IJ](C connects to the vertical line {7, '} in

0’y+1,’y+m+1,...,,u—m+1
y+1,v+m+1,...,pu—m+1-

Hence UJ,(C“’W = w]i””)Hzii;’izﬂZ:zﬂ € PM". It follows analogously that if 4 <  then UJ](C“’V) =
pt1ptmA+1,. o y—m41—(7,7) m
O tptmi1 m@y € PAGE [
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Sec 3.3: The planar modular partition monoid P}’

Figure 3.28: Given m = 3 and k = 10,
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3.3.6 Corollary: For each m € Zsg, k € Z>,, and p,vy € {0,...,k} such that p+~v > 0 and p =

7 (mod m), blocks of type (u,7) do appear in some elements of PH;".

Proof. Trivially follows from Proposition 3.3.5 where we established that the well-defined bipartition
@,(c“ ’7), which contains a block of type (i, ), may be factorised into a product containing only (2, 2)-transapsis

generators and m-apsis generators. U

§ 3.3.4 Building blocks

We established our characterisation of the m-apsis monoid @;" by first establishing transversal and
non-transversal building blocks, then factorised each element of the m-apsis monoid @ into a product
containing transversal and non-transversal building blocks. Establishing that the planar mod-m monoid
PM;" is equal to the submonoid generated by (2,2)-transapsis and m-apsis generators w? may be

done in a similar fashion.

Note that for each m € Zs, k € Z>, and p,y € {0,. .., k} such that p++v > 0 and p = v = k (mod m),
in order to be able to form a bipartition containing precisely one block of type (i, ) then only m-apses,

we additionally require that p = k (mod m), or equivalently that v = &k (mod m).

Both for the sake of succinctness and due to there being no notational ambiguity in doing so, when we
need to require p = v (mod m) and p = k (mod m) we simply state that we require u = v = k (mod m).
3.3.7 Definition: For each m € Zsg, k € Z>,, and u,y € {0,...,k} such that 4+~ > 0 and

==k (mod m), let w,(c“”) denote the bipartition in P}’ containing:
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Chapter 3: Characterisations

(i) the type (p,7) block {1,...,u,1,....7"};

(ii) for each j € {1, .. k_—”}, the upper m-apsis {u+m(j —1)+1,...,u+ mj}; and

’om

(iii) for each j € {1, ce k%}, the lower m-apsis {(y +m(j — 1) +1),...,(y+mj)'}.

For example given m = 2 and k = 9, Figure 3.29 depicts wél’S) € [ng.

Figure 3.29: Given m =2 and k =9,
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We proceed by establishing in Proposition 3.3.8 that w,(cu " e P#". The reader may find it useful to

refer to Figure 3.30 which illustrates that, given m =2 and k =9, wés’l) = 555’1)03:2:27’2 € %g

3.3.8 Proposition: For each m € Zsg, k € Z>,, and p,y € {0,...,k} such that 4+~ > 0 and
uw=~=k (mod m),
() _ =) gy+lytmtly+2mtl,. k—m+1
w " =@ O it tomatk—mi1 € PR
Proof. Let k = max {u,~} and recall that for each j € {E +1,..., k}, w,(g“”” contains the vertical line

{4.4}-

: — (1Y) gy +1,y+mA1,y+2m+1,. k—m+1,
When forming the product @y, 97+1’7+m+1’7+2m+1 _____ ka1

(i) the type (w,7) block {1,...,u,1,...,9'} in DI(C‘L"Y), which connects to the vertical lines {7, j'} in

y+1,yv+m+1,v+2m+1,...,k—m+1 . . .

O tmattomit k—mi1 Where j € {1,... v}, is preserved;
. . Y+1,v+m~+1,v+2m+1,....k—m-+1 . . (psy) .
(ii) the lower m-apses in 97+1,’y+m+1,’y+2m+1,".,k7m+1’ which are lower m-apses in w,” ", are preserved,;

(iii) foreachj € {1, e ’%’5}, the m-apsis {k+m(j—1)+1,..., k+mj} in Gziiziziizigzii::zﬁ,

(ky7)
k

which joins to vertical lines in @ , is preserved;

(iv) for each j € {2, e E%}, the lower m-apsis {(y+m(j—1)+1),...,(y+mj)'} in w,(j"”) and the

. . Y s y+1,7v+m+1,v+2m+1,....k—m—+1 . . .
upper m-apsis {y+m(j—1)+1,...,y+mj}in 6 0T 0 Ty, Join and are removed;

and

(v) for each j € {1, R Ei“}, the upper m-apsis {u+m(j—1)+1,...,u+mj} in w,(j”) is preserved.

m

(y) _

, 1, 1, 1,.. k—m+1
Hence wy! ’Y)QV"F y+m+1,v+2m+ k—m+ e [Pm;ﬂ ]

o
k y+1,yv+m+1,v4+2m+1,..., k—m+1
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Sec 3.3: The planar modular partition monoid P}’

Figure 3.30: Given m =2 and k=9,
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§ 3.3.5 Transversal building blocks

We now turn our attention to bipartitions in P where non-transversals must be m-apses.

3.3.9 Definition: For each m € Z>q and k € Z>p,, let T} denote the set of all o € PM" such that
every non-transversal block b € « is an m-apsis. We shall refer to elements of T} as transversal building

blocks.

We proceed in this subsection to establish that T} is contained within the monoid generated by
(2,2)-transapsis generators and m-apsis generators [Pm;n. In order to do so we partition T} based

on transversal types from left to right then establish our desired result inductively.

Note that for each m € Zsq, k € Zsy,, r € {0,...,k}, and p1,..., fry Y1,---,% € {1,...,k} such that
i =75 (mod k) for all j € {1,...,r} and X7_,pu;, ¥%_;v; <k, in order to be able to form a bipartition
of rank r with a distinct block of type (1;,7;) designated for each j € {1,...,7}, we additionally require
that X7_,p; = k (mod m), or equivalently that ¥%_,7; = k (mod m).

3.3.10 Definition: For each m € Zwg, k € Z>y,, r € {0,...,k}, and p1, ..., e, 71,-.., 7 € {1,...,k}
such that p; = v; (mod k) for all j € {1,...,r}, Xy _qp;, ¥_1v; < k and ¥7_;p; = k (mod m), let
E,&“lm)"“’(””%) denote the set of all w € T}* such that w contains precisely:

(1) k*E]T‘:Uij

- upper m-apses;

k—=X7_17;
——I=L7 lower m-apses; and
m

(i)

(iii) r transversals of type (p1,71), «, (ttr,¥-) from left to right.

97



Chapter 3: Characterisations

Note that by definition T}' = J re{0,....k} E,(CM’“)"”’(“"’%).

Bl seees iy Y1 5o Yr €{ 1,00 K}
ni=v; (mod m) Vv je{l,...,r}
zgzlpj,z}:l»ngk
Ei_1p;=k (mod m)

Next we seek to establish whether Eff L)y () C mkm, which may be done in an almost identical
fashion to how we established our characterisation of the m-apsis monoid @}'. We again begin by
establishing that for each w € I,g“l’%)"“’(““%), each element of E,&“l’%)"“’(“"’%) may be factorised into
a product containing w and m-apmorphisms. An example of such a factorisation when m = 2 is depicted
in Figure 3.31.

(12,71) 5005 (o vr)

3.3.11 Proposition: For each w € T} ,

Eéﬂlv'ﬂ)v”v(l‘h’%‘) C Owol.

Proof. Follows identically to the proof of Proposition 3.1.30, which was our analogous result when char-
acterising the m-apsis monoid @', to show that for each ¢ € ?E](CM’"“)"“’(“”%), ) = Gf*wﬁl‘z* and hence

I,i“l’ﬂ“)""’(ur’%) C Orwor. -

Figure 3.31: Given m =2 and k£ = 13,

NS QR N

¢
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3.3.12 Corollary: If the intersection of E,(C”““)"“’(”’"’%) with the monoid generated by (2, 2)-transapsis

generators and m-apsis generators P, is non-empty then E,(v” L) (i) PM".

Proof. Suppose there exists w € I,(CM’M)"”’(“T’%) NPM", then it trivially follows from Proposition 3.3.11

that T C @muer C PMI O
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Sec 3.3: The planar modular partition monoid P}’

3.3.13 Proposition: For each m € Zsg, k € Z>p, 1,y € {1,...,k} such that p = v = k (mod m),
EI(CHF/) g %Zl

Proof. 1t follows by definition that wl(f M € Iéﬂ ’7), and we established in Proposition 3.3.8 that w,(c“ M e

PM;". Hence w,(f’v) € Ilg’m) NPM’", employing Corollary 3.3.12 we have IEC”"Y) c P O

3.3.14 Definition: For each m € Zsg, k € Z>y,, r € {0,...,k}, and pa, ..., pr, 71,7 € {1,..., Kk}
such that p; = v; (mod k) for all j € {1,...,7r}, Xy_yp;, ¥_1v; < k and ¥7_;p; = k (mod m), let

w0 qenote the element of T 7)) containing:

(i) the type (p1,7v1) transversal {1,...,u1,1", ..., ¥1};

(ii) for each j € {1,...,%}, the upper m-apsis {p1 +m(j — 1)+ 1,...,pu1 + mj};

k*E;:ij
m

(iii) for each j € {1, ey }, the lower m-apsis {(y1 +m(j — 1)+ 1),...,(y1 + mj)'};

(iv) for each j € {2,...,r}, the type (u;,y,) transversal {k—E;-":jui—Fl, e k=30 s (B =20y +

1)l7 LR (k - Z;'q:j—i—l,)/i),}v
and let U,(CM’%)""’(””%) denote the element of I,(C”I’Vl)""’(““%) containing:

(i) for each j € {L...,%}, the upper m-apsis {m(j — 1)+ 1,...,mj};

k=%7 17
m

(ii) for each j € {1, ce }, the lower m-apsis {(m(j — 1)+ 1)/,..., (mj)'};

(iii) for each j € {1,...,r}, the type (u;,7;) transversal {kz—Zfzjui—i—l, e k=30 s (B =20y +

1), ..., (k- Z;;j+1'7i)/}'

For example given m = 2, %(13,1),(1,3) = Ui

I’(74,2),(3,1)

3,1),(1,3) c Z54(13,1),(1,3) along with w;4,2),(3,1)7U;4,2),(3,1) c

are depicted in Figure 3.32.

Analogously to when characterising the m-apsis monoid @', we proceed by establishing in Proposition
3.3.15 that for each m € Zsg, k € Zsp,, r € {0,...,k}, and p1, ..., pr, 71, .., € {1,..., k} such that

pj =75 (mod k) for all j € {1,...,7}, X5y, 5 1y <k and ¥7_;u; =k (mod m),

(B1,71) : . (B2,72); s (s Yr) .
W) () o (Ek_xf'l:zw Didsy_ ;) (idy, @G ) ez
k

(i TL NG @idsy ) <
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Chapter 3: Characterisations

Figure 3.32: Given m = 2,

SEDAD _ 60,0 _ e TED.03)
LB _ KLJ ﬂ e TG
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For example, given m = 2, Figure 3.33 illustrates that w(3’1)’(1’3) (ws (. )691d1)(1d1 @v(l 3)) € Cff”l)’(l’?’)

and Figure 3.34 illustrates that w(l 56208 _ (iq; @ 6 2 (1’3))( (%) g ids) € Egt’5)’(6’2)’(1’3).

3.3.15 Proposition: Foreachm € Zsg, k € Zsy,, r € {0,....k},and p1, ..., ry Y1, -7 € {1,..., Kk}
such that y; =7 (mod k) for all j € {1,..., 7}, XI_pj, ¥5_y9; < k and ¥7_, p; =k (mod m),

G, @1y )i, & 05T 0y 2

A1) (b Y k=m
wéﬂl,"/l)v (#rsyr) —

(id,, @U](C/L_?’L;';/Q)vn-,(ﬂra’)’r ) (w I(JHM)Q @1dg ) <7

Proof. Suppose p11 > 71. Note that since k > X7, pu; > 1 + X7_ou; we have:

(i) k= X7_pp; > p1 = max {p1,71}, ensuring w,(f’fé}_l:)zuj is well-defined;

i) k— > X% o, X5_oy;, ensuring piH2 ) () 4o ol defined; and
j=2M7s j=2"1] k—m1

—v1 =3 _ouj S .
(iii) MTJ*M, which is both the number of lower m-apses in w,(c‘ilgrl)z s and the number of upper
i

(12,72) 50005 (Hryyr)

m-apses in v , is a non-negative integer.

The remainder of the proof follows identically to the proof in Proposition 3.1.29, which was our analogous

result when characterising the m-apsis monoid @}". O
3.3.16 Proposition: Foreachm € Zsg, k € Zsy,, 7 € {0,....k},and p1, ..., pry v1, -9 € {1, ..., Kk}

such that p; = ~; (mod k) for all j € {1,..., 7}, X7_yp;, ¥7_1v; < kand ¥7_,pu; =k (mod m), we have
I}iﬂlﬁl) ----- (B syr) - %;ﬂ
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Sec 3.3: The planar modular partition monoid P}’

Figure 3.33: Given m = 2,
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Figure 3.34: Given m = 3,
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Proof. Follows identically to the proof of Proposition 3.1.30, which was our analogous result when char-

acterising the m-apsis monoid @}". O

3.3.17 Proposition: For each m € Z~¢ and k € Z>,,, T;' C PM;".

Proof. Recall that by definition T]' = re{0,...k} I,g’“m)"”’(“”"%), hence it follows from

By V1Y €{ 1,00 K}
pi=vy; (mod m) V je{l,...,r}
Sk X517 <k
Zi_pj=k (mod m)

Proposition 3.3.16 that T;' C PM;". O

§ 3.3.6 Non-transversal building blocks

We now turn our attention to bipartitions in the planar mod-m monoid P}’ where transversals must

be lines, and either lower non-transversals or upper non-transversals must be m-apses.
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Chapter 3: Characterisations

3.3.18 Definition: For each m € Zs¢ and k € Zx>,, let U} denote the set of all o € PM;" such that

every:

(i) transversal in « is a line; and

(ii) lower non-transversal in « is an m-apsis,
furthermore let 47" denote the set of all o € PM;" such that every:

(i) transversal in « is a line; and

(ii) upper non-transversal in « is an m-apsis.

We shall refer to elements of UL as upper non-transversal building blocks, and elements of £7" as lower
non-transversal building blocks. By a non-transversal building block we shall mean an upper or lower

non-transversal building block.

We proceed in this subsection to establish that both U;" and £} are contained within the monoid
generated by (2,2)-transapsis genrators and m-apsis generators PM". Containment of £ will trivially
follow from containment of U;". In order to establish the latter containment, first we partition U} based
on the number of upper non-transversals that are not m-apses, then we establish our desired result

inductively.

Note that L%J is the maximum number of upper non-transversals an element of U}* may contain, however

in such a case at least one upper non-transversal must be an m-apsis, hence U’ may contain at most

Lk—im

e J upper non-transversals that are not m-apses.

3.3.19 Definition: For each x € {O, cee L’“ij }, let U, denote the subset of all bipartitions n € U}
such that n contains precisely x upper non-transversals that are not m-apses.

k—m

Note it follows by definition that U, = ©}* and that U} = UL[;‘ J u

x-

3.3.20 Definition: For each z € {1, cee “_TmJ} and 1 € U, by definition there exists:
(i) p € mZso and b = {by,...,b,} € n, where by,...,b, € {1,...,k}, such that p < k, b is a type
(1, 0) non-transversal that is not an m-apsis and no upper non-transversals of 7 pass underneath

b;
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Sec 3.3: The planar modular partition monoid P}’

ii) 11 €4{0,...,by — 1} and 75 € {0,...,k — b,} such that the number of transversal lines in 1 whose
(i) { " "

upper vertex sits to the left or right of b € i is 1 and ro respectively; and

(iii) upper vertices uy,...,up, € {1,...,01 — 1}, Up 41, .+, Ur,4r, € {by + 1, ..., k} and lower vertices
liy. oyl 4y € {1,...,k} such that for each j € {1,...,r1 + r2}, n contains the transversal line

{uj’lj}'

(1,0)

+ Let w, denote id,, ®w,""_  ®id,, where w0

k—ri—r, Was outlined in Definition 3.3.7 and shown to

be an element of P in Proposition 3.3.8; and

—7o

o let »~ denote the upper non-transversal building block in U,_; containing:

(i) excluding b, the upper non-transversals of 7;
(ii) for each j € {1,...,u}, the transversal line {b;,r1 + j};
(iii) for each j € {1,...,71}, the transversal line {u;,j'};
(iv) for each j € {1,...,ro}, the transversal line {u;, (k —r2 + j)'}; and

(v) foreachj € {1, ce Lﬂ:r”}, the lower m-apsis {(r1+u+m(i—1)+1), ..., (r1+pu+mj)'}.

Figure 3.35 contains an example of w, and n~ for m = 2, k£ = 12 and a given n € U;.

Figure 3.35: Let m =2, k = 12.

2

U1 by b U2
H'\U‘—L’/'ﬁ/ -

Given n = e U,
6« o & . 6§ o & o &

As outlined in Definition 3.3.20, we have r; = ro = 1 and:
MEE SRR
./ 6§ o & o & o &

(AN WA WD A U A W 4

i)n- =

€ U,; and

(if) wy =

¢ o & o & o & o &

= id; 9 wiy” ®id, € P2,
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We proceed to establish that each U, is contained within the monoid generated by (2, 2)-transapsis gen-

erators and m-apsis generators P;WIZL. To do so we will show that each n € U_, where x € {1, - L]“_ij },

*

may be factorised into the product n‘w,,@,u?) ", an example of which is depicted in Figure 3.36.

3.3.21 Proposition: For each m € Z~q, k € Z>,, and x € {O, RN L’“’T’”J }, u, C [szq.

Proof. By definition U, = ©}'. We established in Proposition 3.1.7 that for each m € Z>, and k € Z>,,
O C @;". Since ;" C PM}", it follows that we also have ©7" C PM;". We also noted in Corollary 3.3.3

that for each k € Zo, OF C PM,. Hence U, C PM™ for all m € Z~q and k € Zx,.

Let z € {1, R Lk_TmJ} and suppose U, _; C PM;". For each n € U, as previously noted in Definition

3.3.20, by definition there exists:

(i) p € mZso and b = {b1,...,b,} € n, where by,...,b, € {1,...,k}, such that p < k, b is a type
(1,0) non-transversal that is not an m-apsis and no upper non-transversals of 7 pass underneath

b;

i) r € o, b1 — and ry € ok — such that the number of transversal lines in n whose
(ii) {0, b 1} and {0,...,k—0b,} h that th b f 11 n wh

upper vertex sits to the left or right of b € i is r1 and r9 respectively; and

(iii) upper vertices u1,...,ur € {1,...,01 — 1}, Up g1, ..o, Ury 4y € {b, + 1, ..., k} and lower vertices
Iy oy lpy 4 € {1,...,k} such that for each j € {1,...,71 + r2}, 1 contains the transversal line

{515}

Note w,, and n both have kf’“% lower m-apses, hence the m-apmorphism 9#’ is well-defined. When
forming the product n_wnG: m
(i) the upper m-apses in 1~ are preserved, which are identical to the m-apses in 7 after excluding b;

(ii) b is formed by the p-apsis {ri +1,...,71 +p} € w, joining to each of n~’s transversal lines

{bj,r1 4+ j} where j € {1,...,u};
(iii) the lower m-apses in 9;’ 7, which are identical to the lower m-apses in 7, are preserved;

(iv) for each j € {1,...,’““7%}, the lower m-apsis {r1 + u+m(G—1)+1,....,m1+p+mjt en-

and the upper m-apsis {(r1 + p+m(j —1)+1)',...,(r1 + g+ mj)} € wy join and are removed,;

(v) for each j € {1,..., k_’%}, the lower m-apsis {r1 +m(j —1)+1,...,71 +mj} € w, and upper

meapsis {(ri +m(j —1)+1),...,(r1 + mj)} € 6, join and are removed;
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Sec 3.3: The planar modular partition monoid P}’

(vi) foreachj € {1,...,71}, the transversal line {uj, l;} is formed by the lines {u;,j'} € n7, {j,7'} € wy
and {j, l;} € 9;); joining; and
(vii) for each j € {k—ry+1,...,k}, the line {u;,}} is formed by the lines {u;, (k —ro +3)'} € 07,

{k—ro+j,(k—r2+4+7j)} € wy, and {k — 19+ 7, l;} IS 0:” joining.

Hence n = n*w,}t?::’ € PM". 1t follows by induction that U, C PM" for all z € {0,..., |22}, O

Figure 3.36: Given m = 2, k = 12 and n € U3 from Figure 3.35,

L2 A\
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¢« o & /mmm

3.3.22 Proposition: For each m € Z-¢ and k € Zx.,, U", £;" C PM".

k—m
Proof. W' = ULO J U, € PM". Containment of ;" may be established in a dual fashion to U, or

x

more succinctly by noting that £;" = (;")" C PM;". O

§ 3.3.7 Factorising PM}"

To establish that the planar mod-m monoid PM}" is in fact the monoid generated by (2, 2)-transapsis

generators and m-apsis generators P, it remains for us to establish that each element of P}’ may

be factorised into a product of (2, 2)-transapsis generators and m-apsis generators.

We will reach our desired conclusion by establishing that each element of PM)"' may be factorised into
a product containing an upper non-transversal building block, a transversal building block and a lower

non-transversal building block.

3.3.23 Definition: For each m € Z~¢, k € Z>,, and o € PM]":
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Chapter 3: Characterisations

e let u, denote the upper non-transversal building block containing;:

(i) the upper non-transversals in «;
(ii) for each j € {1,...,k} such that j is an element of a transversal in «, the vertical line {7, j'};

(iii) lower m-apses containing the remaining vertices,
o let t, denote the transversal building block containing:

(i) the transversals contained in «;

(if) m-apses replacing the non-transversals in «, and
e let [, denote the lower non-transversal building block containing;:

(i) the lower non-transversals contained in «;
(ii) for each j € {1,...,k} such that j' is an element of a transversal in «, the vertical line {3, j'};

(iii) upper m-apses containing the remaining vertices.

Figure 3.37 contains an example of u,, t, and I, for a given a € Q%S.

Figure 3.37: Let m = 2 and k = 16.

N A A 5 A U U

Given a = c Pm3,,

Fv S S iy SN s N s

the transversal and non-transversal building blocks constructed from

« as outlined in Definition 3.3.23 are:

! ! ! LA X!

(i) ua = € u?t‘);
¢ ¢ ¢ 6« o ¢ o
S U S !

(ii) to = € E%GQ
¢ ¢ o ¢ ¢ o & o &
! L (DA S A W4

(iii) I, = € 2.
v e & e SNy N

3.3.24 Theorem: For each m € Z~¢ and k € Z>,,, the planar mod-m monoid PM;" is equal to the

monoid generated by (2, 2)-transapsis generators and m-apsis generators [P,m;”.
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Proof. Tt follows trivially from (2, 2)-transapsis generators and m-apsis generators sitting inside the planar
mod-m monoid PM;" that PM" is contained within the planar mod-m monoid P#M}". Conversely for

each a € PM", when forming the product ust,ls (see Figure 3.38 for an example):

(i) the upper non-transversals in w,, which are identical to the upper non-transversals in «, are

preserved;

(ii) the transversals in ¢,, which are identical to the transversals in «, are preserved as they join to

vertical lines in both u, and [, by construction;

(iii) the lower non-transversals in [,,, which are identical to the lower non-transversals in «, are preserved;

and

(iv) the lower m-apses in u, and upper m-apses in t, join and are removed, similarly with the lower

m~apses in t, and upper m-apses in l.

Hence o = uatala, giving us PM" C UPTILT C PMAT. O

Note that no diapsis or (2,2)-transapsis generator may be generated by a product of other diapsis
and (2, 2)-transapsis generators. Hence the generating set of the planar mod-m monoid established in
Theorem 3.3.24 is minimal under set inclusion.

Figure 3.38: Given m = 2, k = 16 and a € PM3, from Figure 3.37,

N WA A A N U S

am./f_n\. YRR
P Uy B
BB EESEBRS, I,
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Chapter 4
CARZINKLITIES

B 4.1 The planar modular partition monoid, |PM}’|

Recall from Definition 2.4.45 that the planar mod-m monoid P} is the planar analogue of the mod-m
monoid M}’ and hence consists of all planar bipartitions o € PPy such that each block b € « satisfies

u(b) = I(b) (mod m).

For each m € Z~o and k € Z>,,, we proceed to establish the cardinality of the planar mod-m monoid

PM by:

(i) for each t € mZx( such that ¢ < k, establishing recurrence relations for the number of PfH}"-feasible
upper non-transversal patterns such that the number of vertices contained in non-transversal blocks

is equal to t;

(i) for each k1, ke € Z>¢, establishing recurrence relations for the number of planar ways to connect ky
upper vertices to ko lower vertices using only transversal blocks b such that w(b) = I(b) (mod m);

and

(iii) establish that the cardinality of the planar mod-m monoid P} can be calculated directly using

the numbers generated from the recurrence relations above in (i) and (ii).

4.1.1 Definition: For each m € Zs¢ and ki,ka € Z>o, by PT(m, k1, k2) we denote the number of
planar ways to connect ki upper vertices to ko lower vertices using only transversal blocks b such that

u(b) = 1(b) (mod m) (see Figure 4.1 for an example).
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Chapter 4: Cardinalities

Figure 4.1: Given m = 3, k1 = 6 and k2 = 3, it may be verified with an exhaustive search that P7(3,6,3) = 8,
that is there are eight ways to connect six upper vertices to three lower vertices using only transversal blocks b
such that u(b) = 1(b) (mod 3), which may be depicted as follows:

PN P
Y R Sy S

4.1.2 Proposition: For each m € Z-q and ki,ke € Z>o, PT(m, k1, k) satisfies the recurrence (see

Tables 4.1, 4.2 and 4.3 for example values):

1 iy = ko =0
. k1=0,k2>0 or k1 >0,ko=0
PT(m, ki, ks) = 4 0 i e mod

k1=k}, (mod m)

Proof. Clearly we may not connect a positive number of vertices to zero vertices using transversal blocks,
nor given k1 # ko (mod m) may we connect k; upper vertices with ks lower vertices using only transversal
blocks b such that u(b) = I(b) (mod m). Suppose k1 = ko (mod m). If the transversal block containing
the upper-right vertex k; connects the kf upper right-most vertices and k} lower right-most vertices such
that k1 € {1,...,k1} and k5 € {1,...,ka}, then there are PT(m, ki — k7, ko — k}) ways in which the
remaining k1 — k7 upper vertices and kg — kb lower vertices may be connected in a planar fashion using
only transversal blocks b such that u(b) = I(b) (mod m). Since there is one way for a single transversal to

connect the k1 upper vertices and ko lower vertices together it is convenient to have PT(m,0,0) =1. O

4.1.3 Definition: For each m € Z~q, k € Z>p,, x € L%J and t1,...,t; € Z>o such that X7_,imt; <k,
we denote by PN (m, k, 1, ..., t,) the number of PM]"-feasible upper non-transversal patterns containing
precisely t; type (m,0), .., and ¢, type (xm,0) non-transversal blocks (see Figure 4.2 for an example).

Note it trivially follows from the planar mod-m monoid P’ being closed under the vertical flip in-
volution *, that is PM"* = PM}", that the number of PM}'-feasible lower non-transversal patterns
containing precisely ¢, type (0,m), ..., and t, type (0,2m) non-transversal blocks is equal to the num-
ber of PM]"-feasible upper non-transversal patterns containing precisely ¢; type (m,0), ..., and t, type

(xm,0) non-transversal blocks.
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Table 4.1: Example values for PT'(2, k1, k2) calculated using the recurrences in Proposition 4.1.2.

A k2 3 4 5 6 7 8 9 10 11 12
0
1 1 1 1 1 1
2 3 4 5 6 7
3 4 8 13 19 26
4 10 29 40 65 98
5 8 26 61 120 211
6 22 70 171 356 665
7 13 61 192 483 1050
8 40 171 534 1373 3088
9 19 120 483 1500 3923
10 65 356 1373 4246 11257
11 26 211 1050 3923 12092
12 98 665 3088 11257 34606

Table 4.2: Example values for PT'(3, k1, k2) calculated using the recurrences in Proposition 4.1.2.

ks k2 3 4 5 6 7 8 9 10 11 12
0
1 1 1 1
2 3 4 5
3 4 8 13 19
4 8 20 38
5 18 50 106
6 8 42 125 288
7 20 100 313
8 50 242 786
9 13 125 592 1979
10 38 313 1460
11 106 786 3624
12 19 288 1979 9042

Table 4.3: Example values for PT'(4, k1, k2) calculated using the recurrences in Proposition 4.1.2.

» k2 2 3 4 5 6 7 8 9 10 11 12
0
1 1 1
2 2 3 4
3 4 8 13
4 8 20 38
5 16 48
6 3 34 114
7 8 74 269
8 20 164 633
9 48 368
10 4 114 834
11 13 269 1904
12 38 633 4372
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Chapter 4: Cardinalities

Figure 4.2: Given m = 2, k = 6, and t1 = t2 = 1, it may be verified with an exhaustive search that
PN(2,6,1,1) = 6, that is there are six [Pﬁﬂg-feasible upper non-transversal patterns containing precisely 1 type
(2,0) block and 1 type (4,0) block, which may be depicted as follows:

SRS SIS PSSR,
AT AT AT

4.1.4 Proposition: For eachm € Z~g, k € Z>p,, T € L%J and t1,...,t; € Z>g such that ¥7_,imt; < k,
PN(m,k,ty,...,t,) satisfies the recurrence (see Tables 4.4, 4.5 and 4.6 for example values):

PN(m,k,0,...,0) = 1;

PN(m,k,t1,... ta) = PN(mk = Lty te)+ Y PN(mk— Lt =1, 1)

ie{l,...,z}
t; >0
Proof. There is only one way to place no non-transversal blocks, giving us PN(m,k,0,...,0) = 1.
Suppose there is at least one non-transversal block to be placed. There are PN (m,k — 1,¢1,...,t;)

P M} -feasible upper non-transversal patterns that contain precisely t; type (m,0), ..., and ¢, type (zm, 0)
non-transversal blocks along the k—1 left-most vertices, that is so that no non-transversal blocks contain
the right-most vertex k. Let ¢ € {1,...,z}. If a type (im,0) non-transversal block a contains the right-
most vertex k, then there are PN(m,k — 1,¢1,...,t; — 1,...,t,) PM; '-feasible upper non-transversal
patterns containing precisely t; type (m,0), ..., t; — 1 type (i¢m,0), ..., and ¢, type (xm,0) non-transversal
blocks along the k — 1 left-most vertices, after which the type (im,0) block a is placed along the im

right-most unused vertices. O

4.1.5 Definition: For each m € Zw, k € Z>,, and t € mZx such that ¢t < k, we denote by PN (m, k, t)
the number of PM]"-feasible upper non-transversal patterns that have ¢ of k vertices contained in non-
transversal blocks, that is PN (m, k,t) =3 ¢, t.ezo, PN(m,k,t1,...,t,) (see Tables 4.7, 4.8 and 4.9

ti4...famt,=t
for example values).

4.1.6 Theorem: For each m € Zs and k € Z>,, the cardinality of PM}" is given by (see Tables 4.7,

4.8 and 4.9 for example values),

Lk/m] Lk/m)]
PR = > > PN(m,k,mu)PN(m,k,ml)PT(m, k- mu,k — ml).
u=0 [=0

Proof. Suppose the number of upper vertices and number of lower vertices contained in non-transversal
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Sec 4.1: The planar modular partition monoid, |P4H;"|

Table 4.4: Example values for PN (2, k, 1) where { = (t1,t2,t3,ts), calculated using the recurrences in Proposition
4.1.4.

= =2 2 =2 =22 =2 =2 22 =2 =9
(=3 =3 =3 =3 =3 =3 =3 =3 =3 — — =3
P = S S S~ — e = S o
tle 2 & =& £ 2 Z£2 o < 2 2 2
k
0 1
1 1
2 1 1
3 1 2
4 1 3 2 1
) 1 4 5 2
6 1 5 9 ) 3 6 1
7 1 6 14 14 4 14 2
8 1 7 20 28 14 5 24 28 4 3 8 1
9 1 8 27 48 42 6 36 2 9 4 18 2
10 1 9 35 75 990 7 50 135 15 5 30 3
11 1 10 44 110 165 8 66 220 22 6 44 4
12 1 11 54 154 27 9 84 330 30 7 60 5
13 1 12 65 208 429 10 104 468 39 8 78 6
14 1 13 77 273 637 11 126 637 49 9 98 7
15 1 14 90 350 910 12 150 840 60 10 120 8
16 1 15 104 440 1260 13 1v6 1080 72 11 144 9

Table 4.5: Example values for PN (3, k, f) where £ = (t1,t2,t3,ta), calculated using the recurrences in Proposition
4.1.4.

= 2 2 =2 =22 =2 2 2 39 =
=3 =2 (=X (=X =3 =2 =2 =2 (=X — — (=X
- O =) =] =] ) — — — (o] ) =) =]
tle 2 o 82 & 2 2 o s 2 2 2
k
0 1
1 1
2 1
3 11
4 12
5 1 3
6 1 4 3 1
7 1 5 7 2
8 1 6 12 3
9 17 18 12 4 9 1
10 | 1 8 25 30 5 20 2
11| 1 9 33 55 6 33 3
12 | 1 10 42 8 55 7 48 66 6 4 12 1
13 | 1 11 52 130 143 8 65 156 13 5 26 2
14 | 1 12 63 182 273 9 8 273 21 6 42 3
15 | 1 13 75 245 455 10 105 420 30 7 60 4

blocks are mu and ml respectively, where u, | € {O, ceey L%J } For each of the PN (m, k, mu) P M} -feasible
upper non-transversal patterns that have mu of k& upper vertices contained in non-transversal blocks

and PN (m, k, ml) PM}'-feasible lower non-transversal patterns that have ml of k lower vertices con-
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Table 4.6: Example values for PN (4, k, 1) where { = (t1,t2,t3,ts), calculated using the recurrences in Proposition
4.1.4.

= =2 2 =2 =22 2 =2 2 2 =2 =9
=3 =3 =2 =3 =3 (=3 (=3 (=X =3 — — (=%
-l s < S =) S - — S =) =)
e 2 a8 =& £ 38 2 o o 2 = <
k
0 1
1 1
2 1
3 1
4 1 1
5 1 2
6 1 3
7 1 4
8 1 5 4 1
9 1 6 9 2
10 1 7 15 3
11 1 8 22 4
12 19 30 22 5 12 1
13 1 10 39 52 6 26 2
14 1 11 49 91 T 42 3
15 1 12 60 140 8§ 60 4
16 1 13 72 200 140 9 8 120 8 5 16 1
17 1 14 8 272 340 10 102 272 17 6 34 2
18 1 15 99 357 612 11 126 459 27 7 54 3
19 1 16 114 456 969 12 152 684 38 8 76 4
20 1 17 130 570 1425 13 180 950 50 9 100 5

tained in non-transversal blocks, there are PT(m, k — mu, k — ml) planar ways to connect the remaining
k — mu upper vertices to the remaining k& — ml lower vertices using only transversal blocks b such that

u(b) = 1(b) (mod m). O

One of the author’s anonymous examiners kindly pointed out, in reference to Theorem 4.1.6, that [61]

contains an interesting discussion of the m = 2 case, with considerable simplification of the formula.

§ 4.1.1 The planar modular-2 partition monoid, ‘PM%‘

The calculated values in the right-most column of Table 4.7, which form the start of the sequence

3k
{|[Pm%| ke ZZQ}, match the formula 2(kli+)1 which is listed on the OEIS as sequence A001764. Fur-

3k
G enumerates the non-crossing partitions of {1,...,2k} with blocks of even size, which we

thermore T

proceed to use in order to establish that the sequence {|[ijli| ke ZZQ} matches sequence A001764 on
the OEIS.

4.1.7 Proposition: The cardinality of the planar mod-2 monoid P is equal to the cardinality of
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Sec 4.1: The planar modular partition monoid, |P4H;"|

Table 4.7: Example values for PN (2, k,t) and {[Pm%‘, calculated using the formulas from Definition 4.1.5 and
Theorem 4.1.6.

. Clo 2 4 6 8 [
5 1 1 3
3 |1 2 12
4 |1 3 3 55
5 (1 4 7 273
6 |1 5 12 12 1428
7 1 6 18 30 7752
8 |1 7 25 55 55 43263
9 |1 8 33 8 143 246675
0 |1 9 42 130 273 1430715
11 |1 10 52 182 455 8414640
12 |1 11 63 245 700 50067108
13 |1 12 75 320 1020 300830572
14 |1 13 88 408 1428 1822766520
15 |1 14 102 510 1938 11124755664
16 |1 15 117 627 2565 68328754959
17 |1 16 133 760 3325 | 422030545335
18 |1 17 150 910 4235 | 2619631042665
19 |1 18 168 1078 5313 | 16332922290300
20 |1 19 187 1265 6578 | 102240109897695

Table 4.8: Example values for PN (3, k,t) and !Pm%‘, calculated using the formulas from Definition 4.1.5 and
Theorem 4.1.6.

SOloos 6 9 12] [P
3 1 1 5
4 1 2 16
5 1 3 54
6 1 4 4 186
7 1 5 9 689
8 1 6 15 2600
9 1 7 22 22 9856
10 1 8 30 52 38708
11 19 39 91 153438
12 1 10 49 140 140 608868
13 1 11 60 200 340 | 2467726
14 1 12 72 272 612 | 10057082
15 1 13 85 357 969 | 40986557
non-crossing partitions of {1,...,2k} with blocks of even size.

Proof. Given a bipartition o € P#M3, each block b € «a satisfies u(b) 4 (b) € 2Z, and given a pla-
nar partition « of {1,...,2k} with blocks of even size, each block b € « satisfies [bN{1,...,k}| =

bn{k+1,...,2k} (mod 2). O

3k
4.1.8 Corollary: For each k € Z>o, |[Piﬂﬁ| = Q(k’i&-
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Table 4.9: Example values for PN (4, k,t) and {[F’Mﬁ‘, calculated using the formulas from Definition 4.1.5 and
Theorem 4.1.6.

) 0 4 8 12 16 P |
4 |1 1 9
5 |1 2 24
6 |1 3 70
7 |1 4 202
8 |1 5 5 589
9 |1 6 11 1795
0 |1 7 18 5644
11 (1 8 26 17652
12 |1 9 35 35 55335
13 |1 10 45 80 176966
14 |1 11 56 136 575004
5 |1 12 68 204 1862638
16 |1 13 81 285 285 6037799
17 |1 14 95 380 665 | 19793749
18 |1 15 110 490 1155 | 65511224
19 |1 16 126 616 1771 | 216404828
20 |1 17 143 759 2530 | 715006656

It follows from the comments section for sequence A001764 on the OEIS that the cardinality of the planar
mod-2 monoid |[Pjﬂ91i| is equal to:
(i) the Pfaff-Fuss-Catalan sequence C3;

(ii) the number of lattice paths from (0,0) to (n,2n) that do not step above the line y = 2z using

precisely n east steps and 2n north steps (see Figure 4.3 for an example);

(iii) the number of lattice paths from (0, 0) to (2n, 0) that do not step below the z-axis using the step-set

{(1,1),(0,—2)} (see Figure 4.4 for an example);

(iv) the number of complete ternary trees with n internal nodes, or 3n edges (see Figure 4.5 for an

example); and

(v) the number of rooted plane trees with 2n edges such that every vertex has even outdegree, also

commonly referred to as even trees (see Figure 4.6 for an example).

B 4.2 The m-apsis generated diagram monoid, |4}’

Recall from Theorem 3.1.38 that the m-apsis monoid @} consists of all bipartitions ov € PM}" such that

either:
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Figure 4.3: The twelve lattice paths from (0,0) to (3,6) that do not step above the line y = 2z using precisely
3 east steps and 6 north steps:

’ AN ’ N ’ A ’ N 7 N ’
AN AN N Z AN AN
’ ’ ’ ’ ’ ’
TAN TAN TAN TAN TAN TAN
’ ’ ’ ’ ’ ’
A AN N A 3 AN
’ ’ ’ ’
; A ; AN ; N B S A AN
A 7 AN 4 AN 7 N 7 AN
Vi Vi Vi 2 VAIEN
A N N AN N N 7 N 7 ?
y) (N (G (RN (N (N N & (N N & (N (G (N (N
Y 4 7 S LA 4 4 7 N 7 7 N 4 7 S 4 4
L 4 4 ¥ 4 4
’ AN ’ N ’ A ’ N 7 N ’
AN AN N Z AN AN
’ ’ ’ ’ ’ ’
TAN TAN TAN TAN TAN TAN
’ ’ ’ ’ ’
Z AN AN AN Z
’ ’ 7 ’
; A B B S ; A
(N
1| /| 4 9 7
Vi Vi Vi 2 2
’ ’ 1~ 14 1
y) (G (N (N (N N & N & (G (N
Y 7 S 4 4 4 7 N 7 N 7 S 4
~ L 4 4 ¥ 4 4

Figure 4.4: The twelve lattice paths from (0,0) to (6,0) that do not step below the z-axis using the step-set

{(17 1)’ (07 _2)}:

(i) « is the identity idg; or

(ii) « contains at least one upper m-apsis and at least one lower m-apsis.

A A A
v
h 2
v v N 4
—] N —]
S S S S
14 14 4 14
A A A
v ~
S AN S
L4 L4 L4
A A A
h
S S S S
14 14 4 14

4.2.1 Definition: For each m € Z>3, k € Z>p,, x € L%J and ty,...,t; € Z>¢ such that X7_,imt; <k,

we denote by PN (m, k,t1,. ..

precisely t1 type (m,0), .., and ¢, type (xm,0) non-transversal blocks.

,tz) the number of @ -feasible upper non-transversal patterns containing
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Figure 4.5: The twelve ternary trees with three internal nodes:

P
iy AR AN

Figure 4.6: The twelve rooted plane trees with six edges such that every vertex has an even out degree:

KA RN T

AN RN

*

Note it trivially follows from the m-apsis monoid @' being closed under the vertical flip involution *,

that is @)"" = @}, that the number of @}'-feasible lower non-transversal patterns containing precisely

type (0,m), .., and t, type (0,zm) non-transversal blocks is equal to the number of @}’-feasible upper
non-transversal patterns containing precisely ¢; type (m,0), .., and t, type (zm,0) non-transversal
blocks.

Further note ([PN — [PN) (m,k,t1,...,ty) is the number of PM;"-feasible upper non-transversal patterns
containing precisely t; type (m,0), .., and ¢, type (zm,0) non-transversal blocks such that none of the
t; type (m,0) non-transversal blocks is an m-apsis.

4.2.2 Proposition: For eachm € Z>3, k € Z>y, v € Lﬁj and tq,...,t; € Z>o such that ¥7_,imt; <k,

m
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Sec 4.2: The m-apsis generated diagram monoid, |4}

PN (m,k,t1,...,t,) satisfies the recurrence (see Tables 4.10 and 4.11 for example values):

PN(m,k,0,...,0) = 1;
PN(m,k,0,ta,...,t,) = 0;

PN(m,k,t1,...,ty) = PN(m,k—1,t1,...,t;)

+ > PN(mk—1ty,... ti—1,...,t,)
i€{1,m..,z}
t; >0

+(PN7|PN) (myk—m,ty —1,... tg).

Proof. There is only one way to place no non-transversal blocks, giving us PN (m,k,0,...,0) = 1.
Suppose there is at least one non-transversal block to be placed. If ¢; = 0 then we cannot @}'-feasibly
place the t5 type (2m,0), ..., and t, type (zm, 0) non-transversal blocks, hence PN (m, k,0,to, ..., t,) = 0.
If no non-transversal blocks contain the right-most vertex then there are PN (k—1,t1,...,t,) @ '-feasible
upper non-transversal patterns containing precisely t1 type (m,0), .., and t, type (xm, 0) non-transversal

blocks along the k — 1 left-most vertices, that is so that no non-transversal blocks contain the right-

most vertex k. Let ¢ € {1,...,2}. If a type (im,0) non-transversal block a contains the right-most
vertex k, then there is at least PN (m,k — 1,¢1,...,t; — 1,...,t,,) @'-feasible upper non-transversal
patterns containing precisely t; type (m,0), ..., t; — 1 type (im,0), ..., and t, type (zm,0) non-transversal

blocks along the k& — 1 left-most vertices, after which the type (im,0) block a is placed along the im
right-most unused vertices. Note however if a is a block of type (m,0) and contains the m right-
most vertices then we have only counted the cases with at least two m-apses. We must also add the
([PN — [PN) (m,k —m,t; — 1,...,t,,) ways to PPg-feasibly place the remaining t; — 1 type (m,0), ...,
and t,, type (zm,0) upper non-transversal blocks along the k& — m left-most vertices such that none of

the ¢1 — 1 blocks of type (m,0) are m-apses. O

4.2.3 Definition: For each m € Z>3, k € Z>,, and t € mZxq such that ¢ < k, we denote by PN (m, k, t)
the number of @}'-feasible upper non-transversal patterns that have ¢ of k vertices contained in non-
transversal blocks, that is PN (m, k,t) = Yt1€Zs0,ta,.. ta €250 PN(m,k,ti,...,t;) (see Tables 4.12 and

t1+...+xmi,.=t
4.13 for example values).

4.2.4 Theorem: The cardinality of @} is given by (see Tables 4.12 and 4.13 for example values),

Lk/m] |k/m]
@ =1+ > > PN(m,k,mu)PN(m,km)PT(m,k —mu,k —ml).

u=1l [=1
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Table 4.10: Example values for [PN(S,k,f) where t = (t1,t2,t3,t4), calculated using the recurrences from
Proposition 4.2.2.

2 22 2 2 232 2 2 2 39 =9
(=3 (=X =3 =3 =3 (=3 =3 =3 =3 — — =3
- D S e} o=} =) — — — [a\| s} e} S
tle 2 & =2 & 2 2 & ¢ e 2 ¢
k
0 1
1 1
2 1
3 11
4 12
5 1 3
6 1 4 3 0
7 1 5 7 0
8 1 6 12 0
9 1 7 18 12 0 7 0
10 | 1 8 25 30 0 16 0
11 | 1 9 33 55 0 27 0
12 | 1 10 42 8 55 0 40 62 0 0 10 0
13 | 1 11 52 130 143 0 55 148 0 0 22 0
14 | 1 12 63 182 273 0 72 261 0 0 36 0
15 | 1 13 75 245 455 0 91 404 0 0 52 0

Table 4.11: Example values for PN(4,k,t) where ¢ = (t1,t2,t3,t4), calculated using the recurrences from
Proposition 4.2.2.

2= 2 =2 =2 22 =2 2 2 9 2 =9
=3 =% =% =% =% =2 =3 =3 =3 — — =3
- D e} e} e} e — — — [a\| =] o) S
tle 2 & & £ 2 2 o S 2 2 2
k
0 1
1 1
2 1
3 1
4 1 1
5 1 2
6 1 3
7 1 4
8 1 ) 4 0
9 1 6 9 0
10 1 7 15 0
11 1 8 22 0
12 1 9 30 22 0 9 0
13 1 10 39 52 0 20 0
14 1 11 49 91 0 33 0
15 1 12 60 140 0 48 0
16 1 13 72 200 140 0 65 111 0 0 13 0O
17 1 14 8 272 340 0 8 254 0 0 28 O
18 1 15 99 357 612 0 105 432 0 0 45 0
19 1 16 114 456 969 0 128 648 0 0 64 O
20 1 17 130 570 1425 0 153 905 O O 8 O
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Sec 4.3: The modular partition monoid, |fH}|

Proof. The identity is the only diagram « € @} with rank(a) = k. Suppose the number of upper and

lower vertices contained in non-transversal blocks are mu and ml respectively, where u,l € {1, ceey Lﬁj }

m
For each of the PN (m, k, mu) @}'-feasible upper non-transversal patterns that have mu of k upper vertices
contained in non-transversal blocks and PN (m, k,ml) @]'-feasible lower non-transversal patterns that
have ml of k lower vertices contained in non-transversal blocks, there are PT(m, k — mu, k — ml) planar

ways to connect the remaining k — mu upper vertices to the remaining £ — ml lower vertices using only

transversal blocks b such that u(b) = 1(b) (mod m). O

Table 4.12: Example values for PN(3, k,t) and ‘gi’, calculated using the formulas from Definition 4.2.3 and
Theorem 4.2.4.

; Y lo 3 6 9 12 ‘gi‘
511 1 5
4 |1 2 5
5 |1 3 19
6 |1 4 3 74
7 11 5 7 320
s |1 6 12 1369
9 |1 7 18 19 5732
0 |1 8 25 46 24553
1|1 9 33 82 104493
12 |1 10 42 128 127 | 439250
13 |1 11 52 185 313 | 1871610
14 |1 12 63 254 570 | 7952611
15 |1 13 75 336 911 | 33550197

B 4.3 The modular partition monoid, |M'|

Recall from Definition 2.4.41 that the mod-m monoid ;" consists of all bipartitions a € Py such that

each block b € « satisfies u(b) = I(b) (mod m).

4.3.1 Definition: For each m € Zs¢ and ki,ks € Z>o, by XT'(m, k1, k2) we denote the number of
ways to connect ki upper vertices to ko lower vertices using only transversal blocks b such that u(b) =
I(b) (mod m).

4.3.2 Proposition: For each m € Z~¢ and k1,k2 € Z>o, XT'(m, k1, ko) satisfies the recurrence (see
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Chapter 4: Cardinalities

Table 4.13: Example values for PN (4, k,t) and ‘gi‘, calculated using the formulas from Definition 4.2.3 and
Theorem 4.2.4.

N Yo 4 8 12 16 ’gi(
i 1 1 7
5 11 2 5
6 |1 3 19
7 |11 4 65
8 |1 5 4 217
9 |1 6 9 766
0 |1 7 15 2747
1m |1 8 2 9489
12 |1 9 30 31 32246
13 |1 10 39 72 110817
4 |1 11 49 124 383561
15 |1 12 60 188 1308449
16 |1 13 72 265 264 | 4430537
17 |1 14 85 356 622 | 15099409
18 |1 15 99 462 1089 | 51718033
19 |1 16 114 584 1681 | 175876825
20 |1 17 130 723 2415 | 595307899

Tables 4.14, 4.15 and 4.16 for example values):

XT(m,0,0) = 1

XT(m,k,0) = XT(m,0,k) =0 if k>0
XT(m, ki, k2) =0 if k1 # ko (mod m);
XT(m, ky, ko) = > (:i ) 1) (ZZ)XT(m, ki — K ks —K))  if ki = ko (mod m).

(K1,k5) < (K1,k2)
k1=k} (mod m)

Proof. Clearly we may not connect a positive number of vertices to zero vertices using transversal blocks,
nor given k1 # ko (mod m) may we connect k; upper vertices with ko lower vertices using only transversal
blocks b such that w(b) = I(b) (mod m). Suppose k1 = ka2 (mod m) and let £} € {1,...,k;} and
kY € {1,... ko} such that k] = k) (mod m). For each of the (Zij) (:Z) ways that a transversal block
containing the upper-right vertex ki may connect k] upper vertices and k) lower vertices, there are
XT(m, ki — ki, ko — kb) ways in which the remaining k; — k] upper vertices and ko — ki lower vertices
may be connected using only transversal blocks b such that w(b) = I(b) (mod m). Since there is one way

for a single transversal to connect the k; upper vertices and ko lower vertices together it is convenient

to have XT'(m,0,0) = 1. O
4.3.3 Definition: For each m € Z~, k € Z>p,, x € L J and t1,...,t; € Z>o such that ¥7_,imt; <K,

k.
m =
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Sec 4.3: The modular partition monoid, |fH}|

Table 4.14: Example values for XT'(2, k1, k2), calculated using the recurrences in Proposition 4.3.2.

k2 | g 2 3 4 5 6 7 8 9
k1

0 1
1 1 1 1 1
2 3 9 33 129
3 16 106 736 5686
4 9 147 1599 18027
5 106 1996 31606 512296
6 33 1599 37383 791439
7 736 31606 905416 24489466
8 129 18027 791439 27370227
9 5686 512296 24489466 1004077636

Table 4.15: Example values for XT'(3, k1, k2), calculated using the recurrences in Proposition 4.3.2.

k2l 2 3 4 5 6 7 8 9
ky
0 1
1 1 1
2 3 11 87
3 16 154 2620
4 131 2647
5 11 1521 55731
6 154 23562 1419082
7 2647 469659
8 87 55731 11676227
9 2620 1419082 353355424

Table 4.16: Example values for XT'(4, k1, k2), calculated using the recurrences in Proposition 4.3.2.

Falg 1 o 3 4 5 6 7 8 9
ky
0 1
1 1 1 1
2 3 13
3 16 211
4 131 4121
5 1 1496 97096
6 13 22518
7 211 428891
8 4121 10039731
9 1 97096 282357916

we denote by XN (m, k,t1,...

precisely t1 type (m,0), .., and ¢, type (xm,0) non-transversal blocks.

,tz) the number of M}'-feasible upper non-transversal patterns containing

Note it trivially follows from the mod-m monoid PM}" being closed under the vertical flip involution *,

that is M} = M}, that the number of M}'-feasible lower non-transversal patterns containing precisely

t1 type (0,m), ..., and t, type (0, zm) non-transversal blocks is equal to the number of M}'-feasible upper
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non-transversal patterns containing precisely 1 type (m,0), ..., and t,, type (zm, 0) non-transversal blocks.

4.3.4 Proposition: For eachm € Z~g, k € Z>p,, T € Lﬁj and t1,...,t; € Z>o such that ¥7_,imt; < k,

m

XN(m,k,tq,...,t,) satisfies the recurrence (see Tables 4.17, 4.18 and 4.19 for example values):

XN(m, k,ty, ... ts) = XN(m, k — 1,41, ..., ts)

-1
+ Z (k >XN(m,k;—im,t1,...,ti—1,...,t1).
}

im — 1

Proof. There is only one way to place no non-transversal blocks, giving us XN(m,k,0,...,0) = 1.
Suppose there is at least one non-transversal block to be placed. There are XN (m,k — 1,t1,...,t,)
M -feasible upper non-transversal patterns that contain precisely ¢ type (m,0), ..., and ¢, type (zm,0)

non-transversal blocks along the k—1 left-most vertices, that is so that no non-transversal blocks contain

the right-most vertex k. Let ¢ € {1,...,z}. For each of the (Z’;;_ll) ways a type (im,0) non-transversal
block may contain the right-most vertex k there are XN (m,k—1,t1,...,t;—1,...,t,) M} -feasible upper
non-transversal patterns containing precisely ¢; type (m,0), ..., t; — 1 type (im,0), ..., and t, type (xm,0)

non-transversal blocks from the remaining k — im vertices. O

Table 4.17: Example values for XN (2, k, f) where t = (t1,t2,t3), calculated using the recurrences in Proposition
4.3.4.

s 2 & & & & =
— (@) S (@) (an) — — (@)
e 2 = s 2 2 £
k
2 1 1
3 1 3
4 1 6 3 1
5 1 10 15 5
6 1 15 45 15 15 15 1
7 1 21 105 105 35 105 7
8 1 28 210 420 70 420 28
9 1 36 378 1260 126 1260 84
10 1 45 630 3150 210 3150 210
11 1 55 990 6930 330 6930 462
12 1 66 1485 13860 495 13860 924
13 1 78 2145 25740 715 25740 1716
14 1 91 3003 45045 1001 45045 3003
15 1 105 4095 75075 1365 75075 5005

4.3.5 Definition: For each m € Zsg, k € Z>,, and t € mZx¢ such that ¢ < k, we denote by XN (m, k, )

the number of M}'-feasible upper non-transversal patterns that have ¢ of k vertices contained in non-
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Sec 4.3: The modular partition monoid, |fH}|

Table 4.18: Example values for XN (3, k, f) where t = (t1,t2,t3), calculated using the recurrences in Proposition
4.3.4.

= = = R = =
— s} s} =) =) — — =)
the = Q) s 2 = £
k
3 I 1
4 1 4
5 110
6 120 10 1
7 1 35 70 7
8 1 56 280 28
9 1 84 840 280 84 84 1
10 | 1 120 2100 2800 210 840 10
11 | 1 165 4620 15400 462 4620 55
12 | 1 220 9240 61600 924 18480 220
13 | 1 286 17160 200200 1716 60060 715
14 | 1 364 30030 560560 3003 168168 2002
15 | 1 455 50050 1401400 5005 420420 5005

Table 4.19: Example values for XN (4, k, ) where £ = (t1, t2, t3), calculated using the recurrences in Proposition
4.3.4.

= = = =2 = = =
- O e} =) =) — — =]
tle 2 a ONCS S
k
4 1 1
5 1 5
6 115
7 1 35
8 170 35 1
9 1126 315 9
10 | 1 210 1575 45
11| 1 330 5775 165
12 | 1 495 17325 5775 495 495 1
13 | 1 715 45045 75075 1287 6435 13
14 | 1 1001 105105 525525 3003 45045 91
15 | 1 1365 225225 2627625 6435 225225 455

transversal blocks, that is XN(m, k,t) = X +, . t.ezo9 XN(m,k,t1,...,t;) (see Tables 4.20, 4.21 and
t1+...+xmt;:t
4.22 for example values).

4.3.6 Theorem: For each m € Zso and k € Z>,,, the cardinality of M;" is given by (see Tables 4.20,

4.21, 4.22 for example values),

Lk/m] Lk/m]
M = Z Z XN (m, k, mu)XN (m, k, m))XT(m,k — mu,k —ml).
u=0 [=0

Proof. Suppose the number of upper vertices and number of lower vertices contained in non-transversal
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blocks are mu and ml respectively, where u,l € {O, ey L%J } For each of the XN (m, k, mu) M}'-feasible
upper non-transversal patterns that have mu of k upper vertices contained in non-transversal blocks and
XN (m, k,ml) M -feasible lower non-transversal patterns that have ml of k lower vertices contained
in non-transversal blocks, there are XT'(m,k — mu,k — ml) ways to connect the remaining k — mu

upper vertices to the remaining k — ml lower vertices using only transversal blocks b such that u(b) =

1(b) (mod m). O

Note that the author and James East, upon the author having explained how he established the results
from this section, used a very similar counting method to establish recurrence relations for the number
of idempotents in the Brauer monoid. James further generalised this result to establish the number of
idempotents in the Partition monoid, which tied in with some of what Igor Dolinka was working on at

the time and led to the collaborative paper [11].

Table 4.20: Example values for XN (2,k,t) and ‘imli‘, calculated using the formulas in Definition 4.3.5 and
Theorem 4.3.6.

t
) 0 2 4 6 | M
2 |1 1 4
3 |1 3 31
4 |1 6 4 379
5 |1 10 20 6556
6 |1 15 60 31 150349
7 |1 21 140 217 4373461
8 |1 28 280 868 156297964
9 |1 36 504 2604 6698486371
10 [1 45 840 6510 337789490599
11 |1 55 1320 14322 19738202807236
12 |1 66 1980 28644 1319703681935929
13 [ 1 78 2860 53196 99896787342523081
14 |1 91 4004 93093 |  8484301665702298804
15 |1 105 5460 155155 | 802221679220975886631

§ 4.3.1 The modular-2 partition monoid, ‘mz’

The calculated values in the right-most column of Table 4.20, which form the start of the sequence
{|m%| ke ZZQ}, match the number of partitions of {1,...,2k} with blocks of even size, which is listed
on the OEIS as sequence A001764. We proceed to establish that the sequence {| m%| ke ZZQ} matches

sequence A001764 on the OEIS.

4.3.7 Proposition: The cardinality of the mod-2 monoid jﬂi’li is equal to the cardinality of partitions of

{1,...,2k} with blocks of even size.
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Table 4.21: Example values for XN (3,k,t) and ‘jﬂ@li‘, calculated using the formulas in Definition 4.3.5 and

Theorem 4.3.6.

Table 4.22: Example values for XN (4,k,t) and ‘Mi‘, calculated using the formulas in Definition 4.3.5 and

Theorem 4.3.6.

0 3 6 9 ||
3 |1 1 17
4 |1 4 155
5 |1 10 2041
6 |1 20 11 36243
7 |1 35 77 826897
8 |1 56 308 23405595
9 |1 84 924 365 800555801
10 |1 120 2310 3650 32417395123
11 |1 165 5082 20075 1528888375697
12 |1 220 10164 80300 82865247031515
13 |1 286 18876 260975 5104104871207161
14 |1 364 33033 730730 |  353921927969377043
15 |1 455 55055 1826825 | 27403472985911422417

0 4 8 12 |1,
4|1 1 132
5 (1 5 1531
6 |1 15 23583
7 |1 3 463261
8 |1 70 36 11259867
9 |1 126 324 330763876
10 |1 210 1620 11522992578
11 |1 330 5940 468713029951
12 |1 495 17820 6271 21971754415317
13 |1 715 46332 81523 1173833581966501
14 |1 1001 108108 570661 |  70790559991302063
15 |1 1365 231660 2853305 | 4779273111284582836

Proof. Given a bipartition o € 2, each block b € « satisfies u(b) + I(b) € 2Z. Conversely, given a
partition « of {1,...,2k} such that every block has even size, each block b € « satisfies |[bN {1,...,k}| =

bA{k+1,...,2k}| (mod 2). 0

B 4.4 The crossed m-apsis generated diagram monoid, |X3}'|

Recall from Definition 3.2.1 that the crossed m-apsis monoid X@" consists of all bipartitions o € M}

such that either:

i) « is a permutation, that is a € S; or
p
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(ii) « contains at least one type (m, 0) non-transversal block and at least one type (0, m) non-transversal

block.

4.4.1 Definition: For each m € Z>3, k € Z>p,, x € L%J and t1,...,t; € Z>o such that X7_,imt; <k,

we denote by XN (m, k, t1,...,t,) the number of X@]-feasible upper non-transversal patterns containing

precisely ¢1 type (m,0), .., and ¢, type (zm,0) non-transversal blocks.

Note it trivially follows from the crossed m-apsis monoid X@;" being closed under the vertical flip
involution *, that is X@}'" = X@}", that the number of X@]'-feasible lower non-transversal patterns
containing precisely ¢1 type (0,m), .., and ¢, type (0, zm) non-transversal blocks is equal to the number
of X@}"-feasible upper non-transversal patterns containing precisely 1 type (m,0), ..., and ¢, type (zm,0)
non-transversal blocks.

4.4.2 Proposition: Foreachm € Z~¢, k € Z>m, z € Lﬁj and tq,...,t; € Z>o such that ¥7_,imt; <k,

m

XN(m, k,t1,...,t;) satisfies the recurrence (see Tables 4.23 and 4.24 for example values):

XN (m, k,0,...,0) = 1;

XN(m,k,07t27...,tI) = 0;

XN (m, k,ty,...,tp) = XN(m,k — 1,t1,...,t;)

E—1\_—
+ > ( >XN(m7k—im,t1,...,ti—1,...,tx).

ety VT 1
t; >0
Proof. There is only one way to place no non-transversal blocks, giving us XN (m,k,0,...,0) = 1.

Suppose there is at least one non-transversal block to be placed. If t; = 0 then we cannot X@} -feasibly
place the t5 type (2m,0), ..., and t, type (zm, 0) non-transversal blocks, hence XN (m, k,0,to,...,t;) = 0.
Now there are XN (m, k—1,t1,...,t,) X@}'-feasible upper non-transversal patterns that contain precisely
t; type (m,0), .., and t, type (zm,0) non-transversal blocks along the k — 1 left-most vertices, that is
so that no non-transversal blocks contain the right-most vertex k. Let ¢ € {1,...,z}. For each of
the (zfy:_ll) ways a type (im,0) non-transversal block may contain the right-most vertex k there are
XN(m,k —1,t1,...,t; — 1,...,t,) X@}'-feasible upper non-transversal patterns containing precisely t;

type (m,0), .., t; — 1 type (im,0), .., and t, type (zm,0) non-transversal blocks from the remaining

k — im vertices. O

4.4.3 Definition: For each m € Z~¢, k € Z>,, and t € mZx( such that t < k, we denote by XN (m, k,t)

the number of X@}'-feasible upper non-transversal patterns that have t of k vertices contained in non-
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Table 4.23: Example values for XN (3, k, f) where t = (t1,t2,t3), calculated using the recurrences in Proposition
4.4.2.

= =2 =2 =2 =2 = =
- | O ) [es) s} — — [es)}
tle =2 o s S o <2
k

0 1

1 1

2 1

3 11

4 14

5 1 10

6 1 20 10 0

7 1 35 70 0

8 1 56 280 0

9 1 84 80 280 0 8 0

10 | 1 120 2100 2800 0 840 0

11 | 1 165 4620 15400 0 4620 0

Table 4.24: Example values for XN (4, k, t—) where £ = (t1,t2,t3), calculated using the recurrences in Proposition
4.4.2.

) 2 2 = S =
= o=} S S — — S
tle = a LONNCS SCS
k
4 1 1
5 1 5
6 115
7 135
8 170 35 0
9 1 126 315 0
10 | 1 210 1575 0
11| 1 330 5775 0
12 | 1 495 17325 5775 0 495 0
13 | 1 715 45045 75075 0 6435 O
14 | 1 1001 105105 525525 0 45045 0
15 | 1 1365 225225 2627625 0 225225 O

transversal blocks, that is XN (m,k,t) = €0t b €Zm0 XN(m, k,ty,...,t;) (see Tables 4.25 and
ti4...famty,=t
4.26 for example values).

4.4.4 Theorem: For each m € Z~( and k € Z>,, the cardinality of X@;" is given by (see Tables 4.25

and 4.26 for example values),

Lk/m] [k/m] o
Xar| = k! + XN (m, k, mu)XN (m, k, m)XT(m,k —mu, k —ml).
k

u=1 [=1

Proof. There are k! elements of rank k, more specifically the symmetric group Sk, otherwise we must

have at least one upper and one lower non-transversal block. Suppose the number of upper vertices
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and number of lower vertices contained in non-transversal blocks are mu and ml respectively, where
u,l € {1, cee L%J } For each of the XN (m, k, mu) X@}'-feasible upper non-transversal patterns that
have mu of k upper vertices contained in non-transversal blocks and XN (m, k, ml) X@}'-feasible lower
non-transversal patterns that have ml of k lower vertices contained in non-transversal blocks, there are
XT(m, k — mu,k —ml) ways to connect the remaining k — mu upper vertices to the remaining k — ml

lower vertices using only transversal blocks b such that u(b) = I(b) (mod m). O

Table 4.25: Example values for XN (3, k,t) and ‘Xgi‘, calculated using the formulas in Definition 4.4.3 and
Theorem 4.4.4.

N tlo 3 6 9 )ngi‘
3 11 1 7
4 |1 4 40
5 |1 10 420
6 |1 20 10 7220
7 11 35 70 175315
8 |1 5 28 5390336
9 |1 84 840 364 199770928
10 |1 120 2100 3640 | 8707927600
11 |1 165 4620 20020 | 439169520075

Table 4.26: Example values for XN (4, k,t) and ‘Xgi‘, calculated using the formulas in Definition 4.4.3 and
Theorem 4.4.4.

. tlo 1 8 12 ’xgi‘
1 1 i %
5 |1 5 145
6 |1 15 1395
7 |1 35 24640
g |1 70 35 683445
9 |1 126 315 24291081
0 |1 210 1575 1012713975
1|1 33 5775 48083983200
12 |1 495 17325 6270 9570506151400
13 |1 715 45045 81510 153658593860200
14 |1 1001 105105 570570 | 10213751655054948
15 | 1 1365 225225 2852850 | 751055052971960100
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FRENS REUATINS

B 5.1 Pattern compatibility ~g

5.1.1 Definition: Let S be a submonoid of the partition monoid P;. We say that an S-admissible
upper pattern p € U(S) and an S-admissible lower pattern ¢ € L(.S) are S-compatible, which we denote
by p ~ ¢ or less succinctly by p ~g ¢ when S is contextually ambiguous, if there exists a € S such that

p is the upper pattern of « and ¢ is the lower pattern of «, that is U(a) = p and L(a) = gq.

5.1.2 Proposition: Pattern compatibility is transitive.

Proof. Let p,q,7 € U(S). Suppose p ~ ¢ and g ~ r. Therefore there exist a, 8 € S such that U(«a) = p,
L(a) = q¢=U(B) and L(B) = r. It follows from Proposition 2.3.39 that U(af) = p and L(af) = r, and

hence that p ~ r. O
5.1.3 Proposition: Given a submonoid S of the partition monoid Py, if S is closed under the vertical
flip involution *, that is S* = S, then pattern compatibility is an equivalence relation.

Proof. Given p € U(S), by definition there exist @ € S such that U(«) = p. Since S is closed under * we
have o*, aa* € S and U(aa*) = L(aa™) = p, giving us p ~ p.

Given p,q € U(S) satisfying p ~ ¢, by definition there exist a € S such that U(a) = p and L(a) = q.
Since o € S, U(a*) = L(a) = g and L(a*) =U(a) =p, g ~ p. O

5.1.4 Definition: Let S be a diagram semigroup that is closed under the vertical flip involution * and
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a,B € S. We say that a and 8 have S-compatible patterns if any of the following equivalent conditions

are satisfied:
(i) U(a) and U(B) are S-compatible;
(ii) U(w) and L(B) are S-compatible;
(iii) L(a) and U(B) are S-compatible; or

(iv) L(«) and L(B) are S-compatible.

B 5.2 Green’s D relation on diagram semigroups closed under *

5.2.1 Theorem: Let S be a diagram semigroup that is closed under the vertical flip involution *. For

each a, 8 € S, (a, B) € D if and only if o and 8 have compatible patterns.

Proof. Suppose (a, 8) € D, and hence that there exist v € S such that a*«a = v*y and vy* = 88*. Then
U(y) =U(yy*) =U(BB*) =U(P) and L(y) = L(y*y) = L(a*a) = L(«a), hence a and 5 have compatible

patterns.

Conversely suppose a and § have compatible patterns, and hence that there exist v € S such that
U(y) = U(B) and L(vy) = L(«). It follows from Proposition 2.3.39 that U(yy*) = U(y) = U(B) = U(BS*)
and L(v*y) = L(v) = L(a) = L(a*«). Hence by Proposition 2.3.43 88* = vy* and v*y = a*«, giving
us (o, ) € D. O

Figure 5.1 establishes that Theorem 5.2.1 may not be generalised for diagram semigroups that are not

*

closed under the vertical flip involution *. In particular, the upper pattern of the second diagram is

compatible with the lower pattern of the third element and vice versa, but the second and third elements

are not D related.

B 5.3 Green’s D relation on P#M;' and M}’

Note that the number of D classes for the planar mod-m monoid was established more thoroughly in [1].

This section will outline how the author reached the same numbers independently.
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Figure 5.1: Product table for a subsemigroup of PZS) where: pattern compatibility is reflexive but not
symmetric; and there exist distinct elements that are not D related despite their upper and lower patterns being

PR P e

N R N N N
N N R M N I
celle e ALl

It follows directly from Theorem 5.2.1 that elements of PM;' (or M}') are D related if and only if
they have compatible patterns. Figures 5.2, 5.3 and 5.4 along with Appendices A.1 and A.2 contain
various examples of depictions of Green’s D classes for PM}"' and M (Note: Dot D classes are defined
in Subsection 3.8-1 of the manual for the GAP Semigroups package [19]). It further follows that the
number of Green’s D classes for either the planar mod-m monoid PM}" or M, is equal to the number

of equivalence classes under pattern compatibility.
5.3.1 Proposition: Given m € Zs, k € Z>,, and p,q € U(PM"), let r, = rank(p), ry = rank(q) and
81y+++58p,,t1,...,ty, denote the size of each transversal block, from left to right, contained in p and ¢

respectively.

(i) 7,8, 200t =k (mod m); and

(ii) p and ¢ are PM}"-compatible if and only if r, = r, and for each i € {1,...,7, =1y},

s; = t; (mod m).

Proof. Tt follows from p and ¢ being PM; -admissible that the sizes of non-transversal blocks in either

p or q are integer multiples of m, and consequently that X* s;,%%,¢; = k (mod m). Condition (ii)

follows trivially from the definition of the planar mod-m monoid. O
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Chapter 5: Green’s relations

Figure 5.2: Given m = 2 and k = 2, D classes for planar mod-2 monoid [ng are:
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Figure 5.3: Given m = 2 and k = 3, D classes for planar mod-2 monoid [Piﬂilg are:
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5.3.2 Proposition: For each m € Z-¢ and k € Z>¢, the number of Green’s D classes for the planar

mod-m monoid PM;" is given by (see Table 5.1 for example values):

omax{0,k—1} m > k;
[P /D| =
|PM;,./D| + op(m, k) m<k.

Proof. If m > k then the planar mod-m monoid P} is equal to the planar uniform block bijections
PFk, which has omax{0.k=1} D clagses. If m < k then it follows from Proposition 5.3.1 that Green’s
D classes for the planar mod-m monoid P}’ may be indexed by ordered partitions of integers from
{K' €{0,...,k}: k' =k (mod m)} into parts of size less than or equal to m. Which may be broken up
into the sum of the number of ordered partitions of integers from {k’ € {0,...,k —m} : ¥ = k (mod m)}
into parts of size less than or equal to m, which is given by ||PjIBIZL_m / D’, and the number of ordered

partitions of k into parts of size less than or equal to m, which is given by op(m, k). O
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Figure 5.4: Dot D classes for P4} (left) and P2 (right).

Table 5.1: Example values for [P}’ /D|, calculated using the recurrence in Proposition 5.3.2.

k

m 01 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10 11
2 1 1 3 4 8 12 21 33 55 88 144
3 1 1 2 5 8 15 29 52 96 178 326
4 1 1 2 4 9 16 31 60 117 224 432
5 1 1 2 4 8 17 32 63 124 244 481
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Note that the example values computed for |PM}'/D|, which are given in Table 5.1, match with the
numbers given in [1]. Further note that the numbers in the second row appear to align with sequence

A052952 on the online encyclopaedia of integer sequences [53].

5.3.3 Proposition: Given m € Zsq, k € Z>,, and p,q € U(M"), let r, = rank(p), r, = rank(q) and
81y+++58p,,t1,...,ty, denote the size of each transversal block, from left to right when considering the

left-most vertex in each block, contained in p and g respectively.

(i) X7, si, 202 t =k (mod m); and

(ii) p and ¢ are #M;'-compatible if and only if r, = r, and there exist 7 € S, such that for each

1€ {17 sy Tp = ’I“q}, Sp-1(i) = tﬂ.—l(i) (mod m)

Proof. Tt follows from p and ¢ being M} '-admissible that the sizes of non-transversal blocks in either p or
Tp

q are integer multiples of m, and consequently that ¥;7,s;, %% ¢, = k (mod m). Condition (ii) follows

trivially from the definition of the mod-m monoid. O

5.3.4 Proposition: For each m € Z, and k € Z>(, the number of Green’s D classes for the mod-m

monoid M} is given by (see Table 5.2 for example values):

p(m, k) m > k;
M, /D] =

/D] + p(m. k) m <k

Proof. If m > k then the mod-m monoid M}’ is equal to the uniform block bijections F, which has
p(m, k) D classes. If m < k then it follows from Proposition 5.3.3 that Green’s D classes for the mod-m
monoid M} may be indexed by partitions of integers from {k’ € {0,...,k} : k¥’ =k (mod m)} into parts
of size less than or equal to m. Which may be broken up into the sum of the number of partitions of
integers from {k’ € {0,...,k —m} : k¥’ =k (mod m)} into parts of size less than or equal to m, which is
given by |M?_m /D|, and the number of partitions of k into parts of size less than or equal to m, which

is given by p(m, k). O

Note that the numbers in the second row of Table 5.2 appear to align with sequence A008805 on the
online encyclopaedia of integer sequences [53], and the numbers in the third row appear to align with

sequence A028289 (also noted by [1]).
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Table 5.2: Example values for [f;'/D|, calculated using the recurrence in Proposition 5.3.4.

- k 01 2 3 4 5 6 7 8 9 10
1 12 3 4 5 6 7 8 9 10 11
2 11 3 3 6 6 10 10 15 15 21
3 11 2 4 5 7 11 13 17 23 27
4 1 1 2 3 6 7 11 14 21 25 34
5 11 2 3 5 8 11 15 21 28 38

B 5.4 Green’s R and L relations on PM}]' and M}’

Recall from Corollary 2.3.43 that for a subsemigroup S of the partition monoid Py that is closed under

the vertical flip involution * and «, 8 € S:

(i) (e, B) € R if and only if U(a) = U(B); and

(ii) (a,B) € L if and only if L(a) = L(B).

Hence the number of Green’s R classes for S is equal to the number of S-admissible patterns.

5.4.1 Proposition: For each m € Z+( and k € Z>,,, the number of Green’s R classes, which is equal
to the number of Green’s L classes, for the planar mod-m monoid P} is given by (see Table 5.3 for

example values):

2max{0,k—1} m > k’
PRI = |U(PM")| =
S PN (m, b, ma)2mex(0k—mu=1} <

Proof. If m > k then the planar mod-m monoid P} is equal to the planar uniform block bijections PFy,
which has 20@<{0:k=1} R classes. For m < k, recall from Definition 4.1.5 that for each u € {O, cee L%J },
PN (m, k, mu) denotes the number of PM} '-admissible patterns that have mu of k vertices contained in
non-transversal blocks. Since transversal blocks must contain consecutive vertices from the remaining

k — mu vertices, the number of ways for the remaining k£ — mu vertices to be contained in transversal

blocks is equal to the number of ordered partitions of k — mu, of which there are 2max{0k—mu—1}
Note that the numbers in the first row of Table 5.3, which are the number of Green’s R classes for the
planar partition monoid PPy, appear to align with the central binomial coefficients (sequence A000984

on the OEIS [53]).
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Table 5.3: Example values for [P}’ /R|, calculated using the recurrence in Proposition 5.4.1.

K 3 4 ) 6 7 8 9 10
20 70 252 924 3432 12870 48620 184756
6 17 39 108 262 717 1791 4867
5 10 22 52 113 254 590 1316
4 9 18 38 80 173 363 772
4 8 17 34 70 144 296 614

NN WD N

Ul W N~
= =N

5.4.2 Proposition: For each m € Z~ and k € Z>,,, the number of Green’s R classes, which is equal
to the number of Green’s L classes, for the mod-m monoid M is given by (see Table 5.4 for example
values):

By, m > k;
M/ R| = |UMM)| =
Zbk:/gnj XN (m, k,mu)Br—mu m < k.

Proof. If m > k then the mod-m monoid M}’ is equal to the uniform block bijections Fj, which has
P R classes. For m < k, recall from Definition 4.1.5 that for each u € {O, ey {%J }, PN (m, k, mu)
denotes the number of P} -admissible patterns that have mu of k vertices contained in non-transversal
blocks. Since each transversal block may contain any of the remaining k — mu vertices, the number of

ways for the remaining & — mu vertices to be contained in transversal blocks is equal to the number of

set partitions of k — mu vertices, which is given by the Bell number % _ .- O

Table 5.4: Example values for [f;' /R|, calculated using the recurrence in Proposition 5.4.2.

k 3 4 5 6 7 8 9 10
22 94 454 2430 14214 89918 610182 4412798
31 122 579 2886 16139 95358 611111
19 72 314 1479 7668 43184 259515
16 57 233 1052 5226 28023 161845
15 53 209 919 4420 23037 129206

U W DN =
— == =N
NN WD [\
ot Ot O o

Note that the numbers in the first row of Table 5.4, which are the number of Green’s R classes for the

partition monoid Py, appear to align with sequence A001861 on the OEIS [53].
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PRESCNTATIONS

M 6.1 Planar modular-2 partition monoid PM?

In this section we conjecture relations that appear to give, when combined with the appropriate diapsis

and (2, 2)-transapsis generators, a presentation of the planar mod-2 monoid [Pﬂ%’[i for all k € Z>s.

6.1.1 Conjecture: For each k € Z>5, the planar mod-2 monoid [PM% is characterised by the generators
{t;,%; :i=1,...,k — 1} along with the relations:

(i) £ =t

(ii) t;t; = t;t; for all |j — ¢ > 1;

(i) 82 = b

(iv) 8;8;8; =9, for all [j —i| =1;

(v) 8,8, =8;0; for all [j —i| > 2;

(vi) £;8; = &;t; = &;;

(vii) t;8,t; = t;t; for all j — i = 1; and
(vil) t;8; = &;t; for all |[j —i| > 2.

The author was able to verify Conjecture 6.1.1 up to k = 7 using GAP (see Appendix A.3 for code).

Since the generators of the planar mod-2 monoid [PJMZ all commute for differences in indices greater than
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or equal to two, the author would be extremely surprised if Conjecture 6.1.1 does not hold.

While the author has not been able to establish the result in Conjecture 6.1.1 for k € Zx>g, we will proceed
to establish a number of results which may be of use to the eventual establishment for all £ € Z>,. We
begin by noting a number of further relations that are implied by the relations in Conjecture 6.1.1,
then establish a non-equivalent upper bound on reduced [PJTBIi—words in normal form, with a number of
further conjectures for enumerating the number of reduced P#7-words in normal form contained within

the established upper bound.

6.1.2 Proposition: The following relations are implied by Relations (i) - (vii) from Conjecture 6.1.1:

(i) 8it;i118; =85

(if) 4185ttt = di1ts;
(i) ti118:8i41 = t;di41;
(iv) tir1ditir1 = titieq;
(V) ;8,418 = ti18;;
(vi) &;8;41t; = 8;t;41; and

(Vii) Oip1tidir1 = 8iq1.
Proof. For each i,j € {1,...,k} such that j —i = 1:

(i) (8)t;0; = & (tit;)8; = (8;1:)8;(£:8;) = 8;8;8; = &;;
(i) &;(8:)t; = 8;8;(tst;) = 8;(8;t;)0it; = (8;8;0,)t; = d;ty;
(i) £5(8:)0; = (t5t:)8:0; = (tit;)d;0; = t;;(:8;)0; = £;(8;8;8;) = t;d;
(iv) t;(8;)t; = (£;8:8;)0;t; = t;(8;0;t;) = (£;8;t;) = tit;;
(V) t:(8;)0; = (t;t;)0;0;, = £;8,(£;8;)0; = t;8;0,;0; = t;b;;
(Vi) &;(8))ti = 0;0;(t;t;) = 8;0;(tit;) = &;(d5t5)d:t; = (;0;8;)t; = &;t;; and

(Vi) 8;t;(8;) = 8;(tit;)d; = (5;;)8:(t;8;) = (8;8:8;) = b;.
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Sec 6.1: Planar modular-2 partition monoid PsM7

6.1.1 A bound on reduced PM?-words
§ K

6.1.3 Definition: We refer to elements of the free semigroup of the planar mod-2 monoid (P#M3)* as
[ij%—words, and say that a Pﬁﬁ—word is reduced if it may not be written with fewer generators using

the relations from Conjecture 6.1.1.

6.1.4 Definition: For each i € {1,...,k — 1} we denote by G; the set {8;,t;} containing the ith diapsis

generator and the ith (2, 2)-transapsis generator.

6.1.5 Corollary: For each k € Z>5 and 4,5 € {1,...,k — 1} such that |j —i| = 1, every PM?-word in

G;G ;G is reducible.

Proof. Follows from Relation (iv) in Conjecture 6.1.1 along with the relations established in Proposition

6.1.2. O

Note every PM?-word may be written in the form 914y ---9n,i, where for each j € {1,...,n}, i; €
{1,...,k—1} and g;;, € G;;. For example given the PM2-word 8stpd;, letting i1 = 3, iy = 2, i3 = 1
g1,3 =93, g2.2 =ty and g3 1 = b1, we have d3t281 = g1.4, 924, 93,i; Where for each j € {1,2,3}, 4; € {1,2,3}
and g; ., € Gyj.

6.1.6 Proposition: In any reduced [P;mz—word 91,iy -+ - Gn,i,, the maximal index m = max {ij 1 j €

{1,...,n}} occurs precisely once.

Proof. Similar to Lemma 2.2 in [54] we use induction on the maximal index of our reduced word. When
m =1, if any g;1 = 61 then g1,1...9n,1 = &1, otherwise g1 ...gn,1 = t1. Let m > 1 with our statement
holding for all m’ € {1,...,m —1}. Suppose there exist j # j’ such that i; = m = i,,, and hence
that our reduced word has the form ... g;,Wgjs m ... where W is either the empty product (when
j" = j+1) or a reduced PM;-word whose maximal index m’ satisfies m’ < m. We proceed to argue
that the existence of 7, j/ forms a contradiction. If W is the empty product then ... g;mgj+1,m - .. may
trivially be further reduced, which contradicts the existence of 7, 7’. If m’ < m — 1 then we may trivially
commute W with g; ,, allowing ... g;mWgj'm ... = ... gjmGj’,mW ..., which may further be reduced
again contradicting the existence of j, j’. Finally, if m’ = m — 1, then there exists ¢ € {j + 1,...,j — 1}
such that W = Wp,gq.m' Wr where the maximal indices my, of Wi, and mpg of W satisfy mp,mr < m—1.
Hence we may write ... ¢; mWgjrm ... = ... §imWrdgm-1WRrGj'm .- = ... WrgjmGgm—195'mWr....

Yet again the existence of j, j" is contradicted since gj mgq,m—19j,m € GmGm—1Grn, and, as established
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in Corollary 6.1.5, every element of G,,G,,_1G,, is reducible. Therefore no such 7,7’ may exist, by

induction the maximal index must occur precisely once. O

6.1.7 Proposition: If W is a reduced PM;-word with maximal index m then W may be rewritten as
W =W'g ... where W is a reduced PM?;-word with maximal index less than m, [ € {1,...,m} and

for each g € {I,...,m}, g € Gi.

Proof. If there were a gap in the sequence of indices following W', then the elements to the right of the
gap all commute with the generators to the left of the gap (up to g,,), so may be relocated to the left
of g,, then absorbed in to W’. If the sequence of indices following W' increased then m would not be
the maximal index, furthermore since the maximal index occurs precisely once, the sequence of indices

following W’ may not remain constant. O

Note that the same process may be repeated on W’ in Proposition 6.1.7.

6.1.8 Proposition: Foreach k € Z>», any reduced PM?-word W may be rewritten as W = Tirir - Tjnin

where:

(1) HEZ>0 and il,...,in7j1,.-.7jnE{l,...,k*l} such that:

(I) for each I € {1,...,n}, ji > i

(IT) for each i € {1,...,n — 1}, 4 < 441 and j; < ji+1, and

(ii) for each [ € {1, .. .,n}, T, € sz .Gy,

Proof. Repeatedly applying the process in Proposition 6.1.7 gives us the increasing nature of the jj,
as they are the maximal indices at each step. Suppose there exists I € {1,...,n — 1} such that 4, >
tip1. Let ry5, = g5, -.95 and 15 60 = Ry, . b, since 4 < gy < gipr we have vy, 57,0 6, =
Gj - Gihjisy - hiy - P = G50 Gir 1l - (9ihi41hay) - - ey, That g, by 41 by, may be reduced

contradicts our word being reduced. Thus we must also have ¢; < i;41 for all 7 € {1,...,n —1}. O

Hence a [sz—word is written in the form required for Proposition 6.1.8 when the replacement of any
(2, 2)-transapsis generators with the same index diapsis generators forms a Jx-word in normal form (from
Definition 2.4.23). If we think of diapsis and (2, 2)-transapsis generators as being lower and upper case
analogues of each other, then this may be thought of as replacing any instances of upper case letters

with the appropriate lower case letters.
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Unfortunately distinct reduced [Pﬁ-ﬁi-words in the form required for Proposition 6.1.8 may produce the
same bipartition once the product has been performed. For example tot; = tito and are distinct reduced

[Pjﬂi’li—words in the form required for Proposition 6.1.8.

Ideally we want to establish an exhaustive set of unique reduced Pjﬂ@li—words, to be identified as IPimIi—words
in normal form, much like Ji-words in normal form from Definition 2.4.23. One option is to use the
lexicographical ordering of Pm,%—words induced by a total ordering of the generators, then assign to each

element o € Pm% the lexicographically lowest-ordered reduced [PJIBIi—word corresponding to a.

When the analogous procedure is done on Ji-words, in order for the selected reduced Ji-words to be in
the normal form identified in Definition 2.4.23, the generators must be ordered by &; < d; if and only
if ¢ < j. If, for example, we used the inverse order then §38; would be assigned over 8,83, while only
the latter is a Jx-word in normal form. Similarly, for the selected reduced [ijli—word to be in the form
required for Proposition 6.1.8 then we need lower indexed generators to be ordered lower than higher

indexed generators, however the order of generators at each fixed index is not as important.

Appendix A.4 contains candidates for [PMi—words in normal form using the above procedure both when
diapsis generators are ordered lower than (2, 2)-transapsis generators at each fixed index and vice-versa,
and where diapsis and (2,2)-transapsis generators have been replaced by lower and upper case letters
respectively from the English alphabet. Note that the candidate words have been ordered based on the
run of decreasing indices that they end with, similar to how we considered the run of decreasing indices

at the end of Ji-words in normal form in Definition 2.4.26.

The first thing the author noticed with the candidates for [PjIl%Ii—words in normal form from Appendix
A .4 was that for each decreasing run of indices, no neighbouring indices both belong to (2, 2)-transapsis

generators.

6.1.9 Definition: For each i,j € {1,...,k — 1} such that j > 4, denote by 9‘{3 the set of all g;...g; €

Gj ... G, such that there does not exist [ € {i,...,j — 1} that satisfies g; = t; and g;41 = t;41.

6.1.10 Example: Examples of 9%3 are:

(i) R = {8, ti};
(i) R = {8,418, Siv1ts, tix18;}; and
(ii) M7 = {8i120i1105, 8ivadipiti, dipotit1d;, tiyadit18;, tiyadipiti}.

6.1.11 Proposition: For each ¢,j € Z-( such that ¢ < j,

mg" = Z(j —i+3), that is the (j — i + 3)th
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Fibonacci number.

Proof. Example 6.1.10 verifies the cases where 0 < j — i < 3. The remaining cases follow inductively

when noting that {%z_lbj, 9%'2_26];1%} trivially partitions 9%3 =

6.1.12 Conjecture: For each k € Z>,, any reduced [PM%—Word may be written in the form r;, ;, ...7j, i,

where:

(i) n € Zso and i1,...,0n,J1,---,Jn € {1,...,k — 1} such that:

(I) foreach i € {1,...,n}, ji > i

(IT) for each il € {1,...,n — 1}, 4y < i;41 and j; < j;41, and

(ii) for each l € {1,...,n}, rj,; € 9{{;

Both sets of candidates for [P;m%—words in normal form from Appendix A.4 satisfy Conjecture 6.1.12, as
do both sets of candidates when k = 7 (which was not included in Appendix A.4 due to the number of

words requiring an unreasonable amount of space).

Further note, even if Conjecture 6.1.12 holds, there still exist words in the form required for Conjecture
6.1.12 that are reducible (see Figure 6.1 for an example), and distinct reduced Pimli—words in the required
form whose products are equal (see Figure 6.2 for an example). Table 6.1 contains the number of
candidate P#M3-words in normal form based on which 9%{ the candidate word ends with a run from, once
reducible and equivalent P#M7-words have been removed. Note that these numbers agree both when
diapsis generators are ordered lower than (2,2)-transapsis generators at each fixed index and vice-versa

from Appendix A.4.

Table 6.1: Number of planar mod-2 normal form words ending with a run from %f

ko
K 1 2 3 4 5 6
1 2
2 3 6
3 5 14 24
4 8 32 68 110
5 13 65 183 348 546
6 21 128 428 1036 1855 2856

6.1.13 Conjecture: The number of required ijli—words in normal form ending with a run from S)‘ijl is

equal to the (j + 2)th Fibonacci number (sequence A000045 on the OEIS [53]).
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Figure 6.1: PM7-word in the form required for Conjecture 6.1.12 that is reducible:

s
. s

&
n D
= = t
83
t3
to

Figure 6.2: reduced [ijli—words in the form required for Conjecture 6.1.12 that form the same product:

!
52 b2
b v o
t3 m t3
52 b2
«

6.1.14 Conjecture: The number of required [ijli—words in normal form ending with a run from 9%% is
equal to (25 — 1).Z(j +1) — 272 + 1 where Z(j + 1) is the (j + 1)th Fibonacci number.
6.1.15 Conjecture: The number of required [PjIBIi—words in normal form ending with a run from 9%;

forms the sequence A046646 on the OEIS [53] (that is, the number of certain rooted planar maps).

It was noted on the OEIS [53] page for A046646 by Emeric Deutsch that for each k& > 2, the kth number
in sequence A046646 is double the (k — 1)th number in the sequence A001764, that is double the number
of PM;_ -words. Hence Conjecture 6.1.15 would establish that every reduced Pz _,-word (including
the identity) remains reduced when either the (k—1)th diapsis generator or the (k—1)th (2, 2)-transapsis

generator is appended on the right.
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APPEYPICES

B A.1 Dot D classes for PM}'

Appendix A.1 contains dot D classes for various values of m,k € Z~g on the planar mod-m monoid

PM;", which were generated using the Semigroups package [19] for GAP [27].

Figure A.3: Dot D classes for P53 (left) and P (right).
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Figure A.4: Dot D classes for PHZ.
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2
6.

Figure A.5: Dot D classes for P4
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Figure A.6: Dot D classes for P (left) and P} (right).
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Figure A.7: Dot D classes for [ng.
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Figure A.8: Dot D classes for PH5.
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Figure A.9: Dot D classes for PM;.
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Figure A.10: Dot D classes for [ng.
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Figure A.11: Dot D classes for PM3.
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Figure A.12: Dot D classes for [ng.
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Figure A.13: Dot D classes for P2,
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A.2: Dot D classes for ;"

B A.2 Dot D classes for M}’

Appendix A.2 contains dot D classes for various values of m, k € Z~( on the mod-m monoid M}, which

were generated using the Semigroups package [19] for GAP [27].

Figure A.14: Dot D classes for #13 (left) and M3 (right).
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Figure A.15: Dot D classes for 3.
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Figure A.16: Dot D classes for 2.
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Figure A.17: Dot D classes for M5 (left) and M3} (right).
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Figure A.18: Dot D classes for mg
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Figure A.19: Dot D classes for Mj
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Figure

A.20: Dot D classes for M.
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B A.3 GAP code for IPjIBIi presentation up to k£ =7

Appendix A.3 contains GAP [27] code for presentations of the planar mod-2 monoid [Pm% for all k €
{2,3,4,5,6,7} (using the relations from Conjecture 6.1.1).

Note that we have relabelled the diapsis generators using &; — a, s — b, 83 — ¢, &4 +— d, &5 — f,
8 — g, and relabelled the (2, 2)-transapsis generators using tq — A, to — B, t3 — C, ty — D, t5 — F,
tg — G

freemon2 := FreeMonoid("a", "A");

a := Generators0OfMonoid(freemon?2) [1];
A := GeneratorsOfMonoid(freemon2) [2];
PMod2 := freemon2/[

[a"2, a],

[A~2, Al,

[axA, al,

[Axa, a],
1;
Size(PMod2) ;
Elements (PMod2) ;
freemon3 := FreeMonoid("a", "A", "b", "B");
a := Generators0OfMonoid(freemon3) [1];
A := GeneratorsOfMonoid(freemon3) [2];
b := GeneratorsOfMonoid(freemon3) [3];
B := GeneratorsOfMonoid(freemon3) [4];

PMod3 := freemon3/[
[a~2, al, [b~2, b],

[axb*a, al,

[bxaxb, bl,

[A~2, A], [B"2, BI],
[BxA, A*B],

[a*A, al, [b*B, Db],
[A*a, al, [Bxb, b],
[AxbxA, Ax*B],

] .

Size(PMod3);
Elements (PMod3) ;
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freemond4 := FreeMonoid("a", "A", "b", "B", "c",

:= GeneratorsOfMonoid(freemon4) [1];
Generators0fMonoid (freemon4) [2] ;
= GeneratorsOfMonoid(freemon4) [3];
GeneratorsO0fMonoid (freemon4) [4] ;
Generators0fMonoid (freemon4) [5] ;
:= Generators0fMonoid(freemon4) [6] ;
PMod4 := freemon4d/[
[a~2, a], [b~2, b], [c72, c],

Qo wo e
]

[axb*a, al, [b*c*b, bl,
[bxaxb, b], [c*b*c, c],

[c*a, axc],

[A~2, Al, [B"2, BI, [C"2, C],
[BxA, AxB], [CxB, BxC],
[C*xA, AxC],
[axA, al, [b*B, bl, [cxC, cl,
[Axa, al, [B*b, bl, [Cxc, cl,
[AxbxA, A*B], [B*c*B, Bx*C],
[cxA, Axc],
[Cxa, axC],

1;

Size(PMod4) ;
Elements (PMod4) ;

ncu);
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freemon5 := FreeMonoid("a", "A", "b", "B", "c", "C", "d", "D");
:= GeneratorsOfMonoid(freemon5) [1];

:= Generators0fMonoid(freemonb) [2] ;

:= Generators0fMonoid(freemon5) [3];
Generators0fMonoid (freemon5) [4] ;

:= Generators0fMonoid(freemon5) [5];

:= Generators0fMonoid(freemon5) [6] ;

:= Generators0fMonoid(freemon5) [7];

:= GeneratorsO0fMonoid(freemonb) [8];
PMod5 := freemon5/[

[a=2, al, [b~2, b], [c"2, c], [d72, 4],

e Q0 wWo =
i

[axb*a, a], [b*cxb, bl, [c*xdxc, c],
[bxaxb, bl, [c*bxc, cl, [d*cxd, dl,

[cxa, axc], [d*b, bxd],
[d*xa, axd],

(A2, Al, [B"2, B], [C"2, C], [D"2, DI,

[BxA, A*B], [CxB, BxC], [D*C, CxD],
[CxA, AxC], [D+B, B*D],
[D*A, AxD],

[axA, al, [b*B, bl, [cxC, cl, [d*D, dl,
[Axa, al, [B*b, bl, [Cxc, cl, [D*d, dI,

[AxbxA, AxB], [B*c*B, B*C], [CxdxC, CxD],

[cxA, Axc], [d*B, Bxdl],
[dxA, Axd],

[Cxa, ax*C], [D*b, bx*D],
[Dxa, a*D],

1;

Size(PMod5) ;

Elements (PMod5) ;
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freemon6
:= GeneratorsOfMonoid(freemon6) [1];
:= Generators0fMonoid(freemon6) [2] ;
:= Generators0fMonoid(freemon6) [3];
:= Generators0fMonoid(freemon6) [4] ;
:= Generators0fMonoid(freemon6) [5] ;
Generators0fMonoid (freemon6) [6] ;
:= Generators0fMonoid(freemon6) [7];
:= Generators0fMonoid(freemon6) [8] ;
:= Generators0fMonoid (freemon6) [9] ;
:= GeneratorsOfMonoid(freemon6) [10];
PMod6 :=

mMhOQAQO WO =
i

[a~2,

c= FreeMonoid("a", "A", llbll, "B", "C", "C", "d",

freemon6/ [
al, [©72, bl, [c"2, <], [d"2, 4], [f~2, f],

[axb*a, a], [b*cxb, bl, [c*d*c, c], [dxf*d, dl,
[bxaxb, b], [c*bxc, c], [d*cxd, d], [fxd*f, f],

[c*a,
[d*a,
[fxa,

[A~2,

[B*A,
[C*A,
(DA,
[F=A,

[a*A,
[Axa,

axc], [dxb, b*d], [fxc, cx*f],
a*d] > [f*b: b*f] s
axf],

Al, [B72, B], [C"2, C], [D"2, D], [F~2, FI],

A*B], [CxB, B*C], [D*C, CxD], [F*D, Dx*F],
AxC], [D*B, BxD], [F*C, CxF],

AxD], [F*B, BxF],

AxF],

al, [b*B, bl, [c*C, c], [d*D, dl, [f*F, f],
al, [B*b, bl, [C*c, c], [D*d, dl, [F*f, f],

[AxbxA, A*B], [Bxc*B, B*C], [C*d*C, C*D], [Dxf*D, DxF],

[cxA,
[d*A >
[f *A B

[Cxa,

[Dxa,

[Fxa,
1;

Axc], [d*B, B*d], [£*C, Cxf],
Axd], [£*B, Bxf],
A*f] >

a*C], [D*b, bxD], [F*c, cx*F],
a*D], [Fxb, b*F],
a*F],

Size(PMod$6) ;
Elements (PMod6) ;

"D",

ufn, "F");
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freemon7 := FreeMonoid("a", "A", "b", "B", "c", "C", "d", "D", "f", "F", "g", "G");
:= GeneratorsOfMonoid(freemon7) [1];

:= Generators0fMonoid(freemon7) [2] ;

:= Generators0fMonoid(freemon7) [3];

:= GeneratorsOfMonoid(freemon7) [4];

:= Generators0fMonoid(freemon7) [5];

:= Generators0fMonoid(freemon7) [6] ;

Generators0fMonoid (freemon7) [7];

:= Generators0fMonoid(freemon7) [8];

:= Generators0fMonoid(freemon7) [9];

:= GeneratorsOfMonoid(freemon7) [10];

:= Generators0fMonoid(freemon7) [11];

:= Generators0fMonoid(freemon7) [12];

PMod7 := freemon7/[

[a~2, al, [©p"2, b], [c"2, <], [d72, 4], [f72, f], [g"2, gl,

Qm MAkhOAQO WO =
i

[axb*a, al, [b*c*b, bl, [c*d*c, cl, [dxfxd, dl, [fxg*f, fI,
[bxaxb, bl, [c*bxc, cl, [d*cxd, dl, [fxd*f, f], [gxf*g, gl,

[c*a, a*xc], [d*b, bxd], [fxc, cxf], [g*d, dxg],
[dxa, axd], [f*b, bxf], [g*c, c*gl,

[f*a, axf], [gxb, b*gl,

[g*a, axg],

(A2, Al, [B"2, B], [Cc"2, c], [D"2, D], [F~2, F], [G"2, GI,

[BxA, A*B], [CxB, BxC], [D*C, CxD], [FxD, D*F], [G*F, FxG],
[CxA, AxC], [D*B, BxD], [F*C, CxF], [GxD, D*G],

[DxA, AxD], [FxB, BxF], [G*C, C*G],

[FxA, AxF], [GxB, Bx*G],

[GxA, AxG],

[axA, al, [b*B, bl, [cxC, cl, [d*D, dl, [fxF, f1, [g*G, gl,
[Axa, al, [Bxb, bl, [Cxc, cl, [Dxd, dl, [Fxf, f1, [Gxg, gl,

[AxbxA, A*B], [Bxc*B, B*C], [C*d*C, C*D], [Dxf*D, D*F], [F*g*F, F*G],

[c*A, Axc], [dxB, B*dl, [f*C, Cxf], [g#D, Dxgl,
[dxA, Axd], [£*B, Bxf], [g*C, Cxgl,

[£*A, Axf], [gxB, B*gl,

[gxA, Axgl,

[C*xa, a*C], [Dxb, b*D], [F*c, cxF], [Gxd, d*G],
[D*xa, a*D], [F*b, b*F], [G*c, c*G],
[Fxa, a*xF], [Gxb, bx*G],
[G*a, axG],
1;
Size (PMod7) ;
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B A.4 Reduced PM;-words in normal form

Appendix A.4 contains [PjIBIi—Words for various values of k. The words were generated by running (with
the specified values of k) ‘Elements(PModk);’ proceeding the code for each presentation in Appendix
A.3, then reordered based on the end run as outlined in Subsection 6.1.1. Note that the presentation
code in Appendix A.3 only covers one ordering of the generators, while in this appendix we will consider

two orderings of the generators.

planar mod-2 words when k=3,
with generators ordered: a,A,b,B

a, A,

b*a, b*A, B*a,

b, B,
a*b, axB,
Axb, AxB,

planar mod-2 words when k=3,
with generators ordered: A,a,B,b

B*xa, b*A, bxa

B) b’
AxB, AxDb,
a*B, axb,

179



APPENDICES

planar mod-2 words when k=4,
with generators ordered: a,A,b,B,c,C

a, A,

b*a, b*A, B*a,

cxbxa, cxbxA, c*B*a, Cxb*a, Cxbx*A,

b, B,
a*b, axB,
Axb, AxB,

cxb, Cc*B, Cx*b,
a*cxb, a*cxB, a*xCxb,
Axc*b, Axc*B, A*CxDb,
bxa*xcxb, bxaxcxB, b*a*xCxb,
B*xaxcxb, B*axcx*B,

c, C,
a*xc, ax*C,
Axc, AxC,
b*c, Dbx*C,
Bxc, BxC,

axbxc, axbxC,
a*B*c, axBxC,
Axbxc, AxbxC,
A*Bxc, AxBx*C,
bxaxc, b*xaxC,
b*A*c, b*Ax*C,
B*a*c, BxaxC,
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planar mod-2 words when k=4,

with generators ordered: A,a,B,b,C,c

A, a,

B*a, b*A, bxa,

CxbxA, Cxb*a, c*B*a, cxbxA, cx*bx*a,

B, b,
AxB, AxDb,
a*B, axb,

C*b, Cc*B, c*b,
A*Cxb, Axc*B, Axcx*b,
a*Cxb, a*c*B, a*cxb,

BxaxcxB, B*akcx*b,
b*A*Cxb,
bxaxcxB, b*akcx*b,

c, c,
AxC, Axc,
axC, axc,
B*C, Bxc,
b*C, Dbx*c,

A*BxC, A*Bxc,
AxbxC, Axbxc,
axBxC, a*Bxc,
a*b*C, axb*c,
B*a*xC, Bxa*c,
b*A*xC, bxAxc,
bxaxC, b*axc,
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planar mod-2 words when k=5,
with generators ordered: a,A,b,B,c,C,d,D

a, A,

b*a, b*A, B*a,

cxbxa, cxbxA, c*B*a, Cxb*a, Cxbx*A,

d*cxbxa, dkxc*bxA, dxc*B*a, d*Cxb*a, d*CxbxA, D*c*b*a, Dxckb*A, Dxc*Bx*a,

b, B,

a*b, axB,
Axb, AxB,

a*cxb, a*c*B, a*xCxb,
A*xcxb, A*cxB, A*Cxb,

bxaxcxb, bxaxcxB, b*a*xCxb,
B*xaxcxb, B*akxcx*B,

axd*xcx*b, a*d*c*B, a*d*xCx*b, a*D*c*b, a*xD*xcx*B,
Axd*cx*Db, Axd*c*B, Axd*CxDb, A*D*cx*b, AxD*c*B,

b*a*d*cxb, b*akxdxc*B, b*axd*xCxb, b*axD*xc*b, b*axD*c*B,
Bxaxd*xcxb, B*axdxcxB, BxaxDxcxb, B*a*D*xcx*B,

cxb*a*xdxc*b, ckb*axdkc*B, cxbxaxd*Cxb, cxb*a*Dxckxb, c*b*axD*c*B,
Cxb*axd*c*b, Cxbxakxd*c*xB, Cxb*a*d*xCxb,

c, C,

axc, axC,

Axc, AxC,
b*c, bx*C,
B*c, Bx*C,

axbxc, a*xbx*C,
axB*c, a*Bx*C,
Axbxc, Axb*C,
A*Bxc, A*BxC,

b*a*xc, b*xaxC,
b*A*xc, b*Ax*C,
B*a*c, BxaxC,
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dxc, dxC, Dx*c,
axdx*c, ax*dxC, axDxc,
Axdxc, AxdxC, A*Dx*c,
b*dx*c, b*dx*C, b*Dx*c,
B*d*c, B*xd*C, B*Dx*c,

axbxdx*c, axbxd*C, axbxDx*c,
a*Bxdx*c, axBxd*C, a*BxDx*c,
Axb*xd*c, Axb*d*C, Axb*D*c,
A*Bxdx*c, A*Bxdx*C, A*BxDx*c,
b*xaxdx*c, bxaxd*C, b*xaxDx*c,
b*Axd*c, bkA*d*C, b*A*Dx*c,
B*ax*dx*c, B*axdx*C, B*a*Dx*c,
cxb*xd*c, cxbxd*C, cxb*D*c,
Cxb*dx*c, Cxb*dx*C,

a*cxbkxd*c, a*xcxbxd*C, axcxb*D*c,

axCxbxd*c, axCxbxdx*C,

Axcxbxd*c, A*xcxbxd*C, Axcxb*D*c,

A*Cxb*d*c, A*Ckxb*d*C,

cxb*a*d*c, cxb*xa*d*C, cxbxaxD*c,

cxbkxAxdkc, cxbkxAxd*C,

Cxb*axd*c, Cxb*axdx*C,

Cxb*Axd*c, Cxb*Axdx*C,
b*akxcxbxdkc, b*a*xcxbxd*C, b*axckxb*D*c,
bka*xCxb*dkc, bkaxCxbxd*C,
B*a*xcxb*d*c, B*axck*b*dxC, Bxakc*bxDx*c,
d, D,

a*d, axD,
Axd, AxD,
b*d, b*D,
B*d, BxD,
cxd, cx*D,
Cxd, CxD,

a*b*d, axb*D,
a*B*d, axBxD,
Axb*d, AxbxD,
AxB*xd, A*BxD,

a*c*d, ax*cxD,
axCxd, a*xCxD,
Axcxd, Axcx*D,
AxCxd, A*CxD,

bxaxd, b*axD,
b*Axd, bxAx*D,
B*xaxd, B*ax*D,
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bxcxd, b*xcx*xD,
b*Cxd, bxCx*D,
B*c*d, B*cxD,
B*C*d, B*Cx*D,

cxb*d, c*bxD,
cxBxd, c*xBxD,
Cxb*d, CxbxD,

a*b*c*d, axb*c*D,
axb*Cxd, axb*Cx*D,
axBxc*xd, a*Bxcx*xD,
axBxC*d, a*BxCxD,
Axbxc*d, Axb*c*D,
Axb*Cxd, Axb*CxD,
AxB*cxd, AxBxc*D,
A*BxC*d, A*B*C*D,

a*c*b*xd, a*xc*bx*D,
a*c*Bxd, a*c*Bx*D,
axCxb*xd, a*Cxbx*xD,
A*xcxbxd, Axc*bxD,
Axc*B*d, Axc*BxD,
A*Cxbxd, A*CxbxD,

bxaxc*d, b*axcxD,
bxa*C*xd, bxa*xCx*D,
bxA*xckd, b¥Axc*D,
bkA*Ckd, b*AxCx*D,
Bxaxcxd, B*a*cx*D,
Bxa*Cxd, Bxa*xC*D,

cxbxa*xd, cxbxaxD,
cxb*A*d, cxb*A*D,
cxBxa*d, c*xBxaxD,
Cxb*axd, Cxb*axD,
Cxb*Axd, Cxb*xA*D,

bxaxcxb*d, bxaxcxb*D,
bxaxc*B*d, b*xaxc*xBxD,
b*a*xCkxb*d, bxa*Cxb*D,
B*xaxcxbxd, B*akxcxb*xD,
BxaxcxBxd, B*axc*xBxD,
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A.4: Reduced P#M?-words in normal form

planar mod-2 words when k=5,
with generators ordered: A,a,B,b,C,c,D,d

A, a,

B*a, b*A, bxa,

CxbxA, Cxb*a, c*B*a, cxbxA, cx*bx*a,

D*c*Bxa, D*c*bxA, Dxckb*a, d*Cxb*A, d*Cxb*a, dkc*Bxa, dkxckb*A, dxckxbx*a,

B, b,

AxB, AxDb,
a*B, axb,

A*Cxb, A*c*B, Axcxb,
a*xCxb, axcxB, a*c*b,

BxaxcxB, B*akcx*b,
b*A*xC*b,
bxaxcxB, b*akxcxb,

D*c*B, Dxcx*b, dxCxb, dxc*B, dxcxb,

AxDxc*B, AxDxcx*b, Axd*CxDb, Axdxc*B, Axdxcxb,

a*D*xcx*B, a*D*c*b, a*xd*Cx*b, a*d*c*B, axd*xcx*b,

BxaxDxc*xB, B*axDxcxb, BxaxdxcxB, B*a*xd*xcxb,
b*Axd*Cx*b,

bxaxDxc*B, b*axDxcxb, bxaxdxcxB, b*akxdxcxb,
Cxb*Axd*Cx*b,

Cxbxaxd*c*B, Cxbkxakxd*cxb,
cxBxa*xD*c*B, cxBxa*xD*c*b,

cxbxAxd*C*b,
c*b*a*xd*c*B, cx*b*akxd*cx*b,

C, c,

AxC, Axc,
a*C, ax*c,

B*C, Bxc,
b*C, bx*c,

AxB*C, A*Bxc,
AxbxC, Axb*c,
axB*C, a*Bx*c,
a*b*C, axb*c,

B*a*xC, Bxa*c,
b*A*C, b*Ax*c,
bxa*C, b*axc,
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Dx*c, dx*C, d*c,
AxDx*c, Axd*C, Axd*c,
a*D*c, a*dxC, axdx*c,
Bx*D*c, B*dx*C, Bxdx*c,
b*Dx*c, b*dx*C, b*dx*c,

A*B*Dx*c, A*Bxdx*C, A*Bxdx*c,
Axb*Dxc, Axb*dx*C, Axbxd*c,
a*B*Dx*c, a*B*xd*C, a*Bxdx*c,
axbxDx*c, axbxd*C, axbxdx*c,
BxaxDx*c, B*xaxd*C, Bxaxdx*c,
b*A*Dx*c, bkA*d*C, bxAxdx*c,
bxaxDx*c, bxaxd*C, bxaxdx*c,
C*bxd*C, Cxbxd*c,
c*Bx*xD*c,
c*b*xd*C, cxb*d*c,
AxC*xbxd*C, A*Cxbxd*c,
A*xcxBxD*c,
Axcxb*d*C, Axcxbkd*c,
axCxb*xd*xC, axCxb*dxc,
axc*xBxDx*c,
a*xcxbxd*C, axcxb*d*c,
C*bxA*d*C, CxbxAxd*c,
Cxb*a*d*C, Cxbkakd*c,
c*B*a*D*c,
cxb*A*xd*C, cxbkAxd*c,
cxb*a*d*xC, cxb*a*xd*c,
BxaxcxBxDx*c,
Bxa*cxbxd*C, B¥axcxb*d*c,
b*A*xCxb*d*C, bxA*Cxbxd*c,
bxa*xc*B*D*c,
b*a*cxbxd*C, b*axcxb*d*c,
D, d,
AxD, Axd,
ax*xD, axd,
BxD, Bxd,
b*D, bx*d,
CxD, Cxd,
c*D, cxd,
AxB*D, AxBx*d,
Axbx*D, Axbx*d,
a*BxD, a*Bxd,
a*bx*D, a*bx*d,
AxCxD, AxCxd,
AxcxD, Axcxd,
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a*xCxD, a*xCxd,
a*xc*D, a*xc*d,

B*ax*D, B*axd,
b*A*D, b*Axd,
b*xaxD, b*xaxd,

B*Cx*D, B*Cx*d,
BxcxD, Bxcxd,
b*Cx*D, b*Cxd,
b*cx*D, b*cxd,

Cxb*D, Cxb*d,
c*BxD, cxBxd,
cxb*D, cxbxd,

AxB*CxD, A*BxCxd,
A*Bxc*D, A*Bxc*d,
Axb*CxD, AxbxCxd,
AxbxcxD, Axbxcxd,
a*B*C*D, a*BxCxd,
a*Bxc*xD, ax*B*c*d,
axb*CxD, a*bxCxd,
axbxcxD, axb*cx*d,

AxC*bxD, A*Cxbxd,
A*c*B*D, AxcxBx*d,
Axc*bxD, A*xcxbxd,
axC*bxD, a*Cxbxd,
axcxBxD, a*c*Bx*d,
axc*xb*xD, a*xc*bx*d,

BkxaxC*D, Bka*Cxd,
BxaxcxD, B*akc*d,
b*A*xCxD, b*xA*Cx*d,
bkAxc*D, bxAxckd,
b*a*CxD, b*xa*Cxd,
bxaxcxD, b*xakxcx*d,

CxbxAxD, CxbxAxd,
Cxb*axD, Cxb*xaxd,
c*B*a*D, c*Bxaxd,
cxbxA*D, cxb*Axd,
c*xb*a*D, cx*xb*xaxd,

BxaxcxBxD, B*akxc*xBxd,
BxaxcxbxD, B*akxcxbxd,
b*A*Cxb*D, bxA*Cxb*d,
bxaxc*B*D, bxaxcxBxd,
bxa*xc*xb*D, b*xaxcxbxd,
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‘gxe ‘qxe
nm nn

‘axOoxexd ‘QqxOxBxg
‘QxD¥exq ‘gkOkBxk(Q ‘qxOxexq

‘QxD*Y  ‘dxOx¥  QxOxY
‘QxDx®  ‘gxOx®  ‘QqkOx®
‘qQxD ‘gxo ‘qxd

‘AxOk@¥CxqxD ‘QkOx(I*BkQ*D ‘kD*P*Cxq*xD G*kOxPxB*xQ*D

QxD*P*¥BxAxD GxOxDPxBxkQ*D ‘qxkOkP*BxqxD

‘gxOx@¥xCxd ‘QkOk( kBx{
‘gxOx@xCxq ‘QxOx(xBxq
CEROKq*Y

‘QxOkP*kBXq*D
‘gxOxPxexd ‘QxD*PxCx{
‘QxD*P*xexq  ‘gkO*PxBx( ‘qQxOxPxBxq

APPENDICES

‘QkOK@xY  “AkD*PRY  ‘GxO*kDHY  ‘AxO¥DxY
‘gxOx(xe ‘QxD*(Q*® ‘qQxD*Pxe ‘g*xO*pPx*e ‘qQxO*Pxe
“gxo*Q ‘Q*O*(Q ‘QxD*P ‘gkO*P ‘QxO*P
‘gxOx *x F¥Cx QO  ‘QkOk Ik FkCkAxOx([ ‘QkD*P*I¥CkQk Ok  ‘GkO*kDPxIxCxqxOx([ ‘QkD*Pk FkBk kO
CQxDKP* I¥CKkAKO*P GxkOKkP*k I¥CxkAkO*P Ak Ok Pk I¥CxAkO*P Gk Ok @k F¥CxAkO*kP Ak Ok Ik F¥CxAkO*P ‘QxD* Pk F#CxqkO*kP ‘GxOk Pk F+CxqxkO*P ‘ qQxOkPk F¥CxqxO*P
CAxD*PkI*CxkA%D  ‘IkO*PxIKkCkA%xD Ak OkPkIxCxq%)

CAxD*PkFxCxAx) ‘IkO*PxkI*kCkA%xD  QxIkPk FxCxq%)

‘Q¥D*P*kIkCkAkD  GrkOkDPxIxCkq%D Qi D*kPkIkBkQ*kD ‘GxkOx( *xF¥CkQ*D ‘QkOk @k FkBkQ*D ‘qxD*DP*F+¥C*xQ*D ‘GkOkPkFkBkxD ‘qkO*DP*I¥C*xq*D

‘gxOxPkIxCxd  ‘qxOxPxIxCxd  ‘GxOx xF¥Cxd  ‘qxOx(xFxCxg ‘gxO*PxIxCxd  ‘qxOxPxFxCx{
CQxDkPkIxCxq  ‘IkO*PkIkCkq  ‘qQkOxPxJkCxq  ‘gxOk@kF¥CxqQ  ‘QkOkxFxkCxkq  ‘qQkD*PxIkBxq  ‘gxOxPkIFxBxq  ‘qxOkP*kFxCxq
‘QxD*PxJ*Y CGxO*PrI*Y ‘ QxO*Px JxY S dxOxQx FHY QO @k FHY ‘QxD*PxI*Y CgxO*PxIxY ‘QxO*Px IxY
‘QxD*P* xR ‘¥ *xP*IxC ‘Q¥OxP*Jxe ‘g¥xOxQxFxe ‘QxOx(xFxe ‘Q¥D*P* Ik ‘¥ *xPxIxe ‘QxOxPxIxe
‘QxD*P* g ‘@xO*Px ] ‘ QO ¥Px ] “gxO*qxT ‘QxO* QT ‘QxD*P*T ‘@rOKPxT ‘QxO¥PxT

n< n.w

‘exg ‘Yxq ‘exq

‘YxqxD ‘exqxD ‘exdxD ‘YxQxD ‘BxQxD

‘exgdx0x(0 ‘YkAkOk([ ‘BxqxOx[ ‘YkA*xD*P ‘BkQkI*P ‘CxGxOxP ‘YxQkO*P ‘BxkQkO*P

‘Y*Q*D*P*d “BkQkDkDPkd  ‘CxgxkOxDPk g TkQkOkPkd ‘BkAxkOxkPx
‘exgxO*x0*xF ‘TkAkOKk@kF ‘BxAxOxAxF ‘TkAxD*¥P*kF ‘BkQAkD*kPkF ‘Cxg*O4P*TF ‘YkQkOKkPkF ‘BxkqxOxPxF

JI°F°aQ‘poo‘gcqy‘e :paxepio siojersuss YTM
‘9=y ueyMm spiom g-pow Jeueld
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Reduced P#M:-words in normal form

A4

O*P* ¥ Q*kD¥P*Bkq  ‘ DkPkIxqxOxPxCxq

¢ D*Pk Ik Y+ Q* D %P
COXP*I¥CxqxO*P

€ O*Pk Ik Q%D+ P*Y
‘O*P*xI¥qxOxP*®

‘ DxPx Ixq*O*P
‘O*P*xIxqxOxBxg
€ O*Pk Ik D*Bxq
CO*P*A*xqQ*xD*xC%q
€ D*P* I+ V*A%D
‘O*PxJxBxq*D
 D*Px xT*q*D
‘DOxP*xI*C*xqxD
‘O*PxJ*qxD* Y

‘ DxPx Ixq*k O
‘OxPxJxqxDxe
‘O*P*J*q*kO*®

€ O*Px A% q%D

¢ O*Pk Q%D
‘OxPxIxexg
CO*Px IxF*q
‘OxPxJxexq
CO*Px xg*Y
 O*Px Ik qxY
‘O*Px Ixg*e
‘O*Px Ixqxe
‘OxPxIxg
‘O*Pxgxq
CO*PxIxY
‘DxPxIxe
‘OxPxg

COXP* JxT*Q*kO*P
‘OxP* J¥CxQ*kO*P

COXP* JxQ*kO*P*Y
‘OxPkI*q*xOxPx®

COxP* x QD *P
‘OxPkI*Q*xOxBxg
“OxP* JxQ*kD*B*(
COXP* IxQ*kDkBk(
R oL CY £eETe)
‘OxPx J¥Cxq*D
COXP*JxFT*qQ*D
‘OxPkJ¥Cxq*xD

€ Ok Pk Ik QkD*Y
COxP* ¥ QD *Y
‘OxP*xJxq*xD*®
‘OxPx J*xqQ*D*®
‘OxPxI*q%D
‘OxPxIkqQ*D
‘OxPxJ¥xexg
‘OxPxIxT*q
‘OxPxJ*xexq
COxPrIxg*Y

‘ OxPx xqx Y
‘OxPkxJxgxe
‘OxPxJ*xq*®
‘OxPx*.Ikg
‘OxPxI%q

COxPk IxY
‘OxPxJxC
“OxPkd

“Ox(@* FxQ* Ok *C*g
COx(@k FxQ*xOxPkB*Yg
COx@k I*Q*xOxIxB*q
‘Ox( * F*Q*D*P*kB*(

‘ Ox @k FxRxqxO*x({

‘Ox(x FKR*Q*OxP
COx(@x FkQ*kOxAxY
Ox@* IkQkO*P*Y
COx(@x FkQ*kOx(x®
‘Ox(@x FkQ*kOxPx®
Ox@* FxQ*O*(

COx@* FxQ*DO*P

‘Ox @k FxQ*xOxBxg

COx@* FRQKOKBK]

‘Ox(@k F¥C*qxD
Ok @k FxQxOxY
‘Ox( *F*Q*D*®

“Ox@kF*qQ*D
‘Ox(xFxexg
COx@+ IxYxq
Ok *xFxexq
Ok @k Frg*Y
Ok @k TxQkY
‘Ox@kIxgxe
‘Ox( xFxQqQxe
“Ox(x Fxg
“Ox(xFIxq
Ok Qx IV
‘Ox@xFxe
COx@*T

RROEY R S e P e P ¢ £Y-FY |
“O*P* Tk QkOkPkBxET
‘OxPx FkQ*xOxxB*q
“O*P* F*Q*kOkPkBx(
C DkP* Ix T A#Ox(
‘OxPxIxexqxO%x(
€ O*Pk Tk Tk D%P
COXP*k F¥Cxqx 0P
€ OP* TxQk D% * Y
€ O*Pk Tk QD Dk Y
COXPk IxqQ*xOx(I*®
‘O*P*kI*q*xOxPx®
“O*PxI*xQxD%(J
‘DOxPx FxQxOxP
‘O*PxI*Q*xOxBxg
€ O*Px Ik QD%
O*P*FxQ*D*B%q
‘D*FP*F*V*A*D
‘OxPxIxBxqQ*x)
DDk Fx V%D
‘DOxPx FkR*xqQ%D
‘O*Px IxQx DY
CO*P* FxQxO%Y
‘OxPx JxQxDx®
‘O*P*I*qQ*kO*®
‘D*P* Ix Q%D

€ O*Px I Q%D
‘O*PxIxexg
‘O*kP*IxT*q
‘O*PxIxexq
CO*Px Ixgxy
CD*D* T kY
‘O*PxIxgxe
‘O*PxIxqxe
‘O*P*Ixg
‘O*P*F*q

CO*Pk TxY
‘O*DPxIxe

‘OxPxT

‘OxP* Fx QD¢ *C*g
COXP*k FxQxOxPkBxYg
‘OxP*kIxQxOxI*B*q
‘OxP*FxQ*D*P*B*q
COxPk Ik T*qxO*x(
‘OxPk FxCxqxO*({
OXP*IkT*Q*kO*P
‘OxPx FkRxqxOxP
‘OxPx FkQ*kOx (kY
OXP*I*Q*kO*kP*Y
‘OxPx FkQ*kOx(x®
‘OxPx FkQ*kOxPx®
‘OxP*FxqQ*O%(
‘OXP*FxQ*D*P
‘OxPx FkQ*kOxCx{
OXP*T*QkD*B*(q
COXP*TxQkOkBK(]
CO%P* TxTHA*D
‘OxP*F¥CxqQ*D
COXPk Ik T*qxO
‘OxPkI¥CxqxD

€ OxPx IxQk Dk Y
COXPkF*Q*xOxY
‘OxPkI*qQ*xDx®
‘OxP*F*xQ*D%®

‘0% P*Ixq%D

‘OxPx FkQ*D
‘OxP*Ixexg
“OxP*IxVxq
‘OxPxF¥xexq

COxPx Ixg*V
D% Pk IxQxY
‘OxPxFxgxe
‘OxP*xI*kqQ*®
‘OxPxFxg
“OxPxF*q

COXPx kY
‘OxpkxFIxe

‘O%DPx*T

‘dxy ‘qQxy
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‘OxVxq ‘Ox¥xq
‘OxBxq ‘Oxexq
‘O*EXY OxgxY
‘O*QxY  ‘OxqxY
‘Oxgxe ‘Oxgxe
‘Oxqxe ‘OxQqxe

‘Oxd ‘Oxg
‘0%q ‘oxq
‘oY Ooxy
‘0xe  ‘oxe
‘9 ‘s
Ox *xqQ#O%Cxg ‘DkPkQkOxkCxg ‘OxPxqQ*D*Cx{
OXP*Q*xDxBxq  ‘ D¥xPxqxD*Bxq
Ox@kQ*OxBxq ‘D*PxQkO*xBxq ‘OkPxQxOxBxq
‘O*PxY*QxD OxkPxTxq*D
‘OxPxexqx) ‘O¥PxCxq*D
COXPkY*AxD OxPxY*qxD
‘Ox@¥C*xQ*D ‘D*P*kBkQkD  ‘IkPkBk*D
‘O*PHQxD*Y O PxQkD*Y
Ox@kQkO*Y  ‘D*kPkA*OxY  OxPxq*OxY
‘OxPxqQ*xD*C ‘OxP*xQ*k)*®
‘O xQ#D%C ‘DkPkQkO*kB  ‘DkPkQkO%E
‘O*PxQxD  O*PxQxD
‘Ox( *QqQx*D ‘D*P*QqQ*D ‘OxP*QqQ*D
‘ox(xexq ‘OxPxexqg ‘Oxpxexqg
Ox@*YxA ‘O¥PxYkq ‘OxPxYxq
‘Ox(xexq ‘D*P*exq ‘OxPxexq
“Ox@xgxY ‘OxPxgxYT COxPxgxY
Ox@xQ*Y  ‘O¥PxQAkY  CO*DP*OxY
‘Ox( xgxe ‘D*Pxg*e ‘OxPxgxe
‘Ox(xqxe ‘O*Pxqxe ‘OxPxQqxe
‘ox(xd ‘0xPxg ‘OxPxg
‘ox( xq ‘0xPxq ‘oxpPxq
“Ox@*Y ‘O*DP*Y ‘O%D*Y
‘ox(xe ‘OxPxe ‘Oxpxe
‘ox(q ‘0*P ‘oxp

COXDPRIKA*O*kPkBkA%D OkPk Ik Ak OkPkCxAx)  Ok[k Fx Ak OkP*kCxA%x) DkP* Ik Ak OkP*CxqQk)  OkPk FxQk Ok PkCxq%D
Ox@*k FkQk Ok *CkQ*kD  DkPk Ik Ok *CkQ*D  DkPk FkQ*kOk(*xCxq*D
COK¥PHkI*QkOKPKBKA*D  OkPx Ik q*kO¥PCx Q%D Dk (k FhAkO*kP*kCk %D ‘D Pk Tk QkDkPKkBKkQ*kD Ok Pk Fxq* O+ P*C*xqQ*D
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Reduced P#M:-words in normal form

A4

‘PxI*qQxOxY
Pk A*qxD%e
‘PxIxkg*xOxC
‘PxJ*qQ*kO*®
Pk A*D* GV
‘PR IxOx GV
‘PxI*D*qxY
Pk A*O QY
Pk I*Dxgxe
‘PxIxO*xg*C
Pk I*D*qxe
‘PxAkO*xqxe

‘P*A*O*P
‘P A¥xq*D
‘PrJxg*D
‘Px Q%O
Pk AxD*g
‘PxI*Oxg
“PrA*D*q
‘PxI*O%q
‘PrIxexg
‘PrAxT*q
‘Prgxexq
‘PrI*D*Y
‘P I*O*Y
‘PrIxD*e
‘PxJx0x®
‘P Axg*Y
‘P AxQY
‘PrIxgxe
‘PxAxqxe
“PxgxD
‘Pxg*D
‘PxAxd
‘Pxgxq
‘PrIxY
‘Pxgxe
‘Pxd

CQxI*QxO%Y
‘ @k F*qxD*e
‘dxFrg*Oxe
‘@*F*qQ*0%®
@k FHO*I*Y
@k THOxg*Y
CQxI*D*qxY
¢ @k FHOx kY
@k F*D*gxe
‘@*FxO*xg*e
‘@ F*D*q*e
‘dxFkO*qxe
‘@xI*O*x(q

‘ @x FkO*P
‘@xF*q*D
‘QxIxgxD
‘@xFxqxD
‘@xF*D*d
‘QxFxOxg
@k F0*q
‘QxF*O%q

¢ QxIxexd

‘ @k FHV*q
‘QxFxexq
C@xIRD*Y
@k FHOY
‘QxFxDxe
‘@xFx0xe

C @k ARV

C @k QY
‘QxIxgxe
‘QxFxqxe
‘axIxD
‘QxIxD
‘axIxd
‘axIxq
CaxIxV
‘QxFxe
‘a3

‘P IxQx D%y
‘PrIxqQrD*E
‘PxFxg*OxC
‘PxFxQ*D%®
PR I*DHI*Y
Pk TAOx kY
‘P IxD*QxY
‘PrI*O*QxY
‘P THD*EKE
‘PxFxOxg*0
‘PrIxDxqxe
‘PxFkO*xQxe

‘PxIkO*({
‘P FkO*P
‘PkT*qQxD
‘P IxgxD
‘PxFxqxD
‘P IxD*d
‘PxIkOxd
Pk FHD*Q
‘P FkO%q
‘PxIrexd
‘PERTHT*Q
‘P Frexq
‘PR TRD*Y
Pk IHOxY
‘PrIxDxe
‘PxFxOxe
‘PR TRV
‘P IHQxY
‘PrIxgxe
‘PrIxqxe
‘PxIxD
‘PxIxD
‘PxIxd
‘PxIxq
‘PrIxY
‘PrIxe
‘PxJ

‘Oxexd ‘oxexq
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‘PrI*QxkO*P*Y

‘PxAkQ*kO*PxE

‘PrI*O*kPrg*Y

Pk IxO*PRA*Y

‘PxAxO¥PxgxC

‘Px J*xO*P*qQ*©

Pk A*q*O*P
‘PR AxY*q*D
‘PxAxBxqQxD
‘PrIxCkEAD
‘P IkY QD
‘PxJ¥CkqQ*D

‘PxA*OxPxg

‘P*A*O*Pxq
‘PxAxDxexg
‘PxI*kO*xBxg
‘PxAxD*Txq
‘PR I*O*Txq
‘PxgxDxBxq
‘PxA*O*Bx]

‘PxI*O*PxY
‘PxIkO*¥Pxe

‘PrI*QxD*Y
‘PrAxG*O*Y

¢ @x TxgxOxQ*Y
@k FHQ*O*A*Y
@k FHI*O*D*Y
¢ @x I*QkO*P*Y
C@xFrIxOx(x®
‘@x FkQ*xOx(x®
‘dxFxg*O*Pxe
‘@xFkQ*kOxPx®
C @k FHO*QrA*Y
¢ @x I*O*Prg*Y
@k FHO*Q*A*Y
@k FHO*P*AKY
‘Q*xF*xO*xq*g*e
‘x FxO*Pxgxe
‘@x FkO*Qxqx®
‘*xF*xO*PxQqQxe
‘Qx FxgxOxd
‘@xF*qxOxq
C QxIxg*O*P
‘Qx Fxq*O*P
¢ @k TV *A*D
‘QxIxexqxD
‘axFxexg*D
‘ @k TV *qQ*D
‘@*F*¥e*xqQ*D
‘ Qx FxOx(xg
‘QxF*OxPxg
CQxI*Ox(Qxq
‘Qx FxOxPxq
‘QxFxDxexg
‘@ F*xO*exg
‘@xFHO*V*q
C@xT*OxV*q
‘QxIxDxexq
‘a*Fx0%exq
C @k THO* QY
CQxI*O*PxY
‘a*FxO*x(Q*e
‘xFkO*Pxe
CQxI*QxD*Y
@k FH*O*Y

‘P IxgxOx(q*V
Pk FRQx Ok (kY
‘P Ig*O*P*Y
‘PxIxQxOxPxY
‘PxIxkIKOx(I*C
‘PxIxkQkO*(I*C
‘P Ixg*O*P*®
‘PxIxkQkO*¥PxC
P IO QrE*Y
‘P I*OxkPxg*Y
Pk TR0 [xAkY
‘P IO PrAxY
‘P IkOk kg*®
‘P IxOxPrg*R
‘PxIxkOkIxqxC
‘P I*O*P*q*®
‘PrIxgxO%xd
‘PxIxqQxO%(d
‘PxIxg*O%P
‘PxIxqQkO%P
‘P TV *A%D
‘PxIxexq*D
‘PxFxCxg*D
‘P TV *qQxD
‘PxFxCxQ*D
‘PxIxOx(xg
‘PxIxOxPxg
‘PxI*Ox(qxq
‘PxIxOxPxq
‘PxIxDxexg
‘PxFxOxCxg
‘P THD*T*]
‘PR TAO*Txq
‘PxIxDxexq
‘PxFxOxexq
‘P THO* QY
‘PxI*O*PxY
‘PxFxOx(I*C
‘PxFkO*PxE
‘P I*QxD*Y
Pk THg*O%Y
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Reduced P#M:-words in normal form

A4

C@* F#O*xQ*Q*kO*B*(
‘PxIkO*P*xqxO*B*kq QxFKkO*P*xqxOxB*q
PR IKOKPRYRA*D Cx TkO*D*Y*A%D
‘P IkO¥PkCkQ*kD @k FKkO*kPxCxq*D
PxIKO¥PkTxA*D Q*x FxkO*kP*FT*qxO
CAx FkO*(I*xCxq%D
‘P IkO¥PkCkQ*kD [k FKkO*kPxBxqxD
C@x FrI*xOxQxCxg
‘AxFkqkOxxCxg
‘x Fxg*O*P*Cxg
C @x FkQ*kOxPxBxT
CAxFkg*OxxCxq
‘@*xF*xqQ*O*xQ*C*q
‘dx Fxg*O*xPxexq
‘P IxkQkO*PxCxq [k Fkq*kDkPxB*q
‘PxA*O*kPxQxD*Y Qx IxO*xPxQxD* Y
CA*x FROxq*Q* %Y
‘P IXOKkP*AxkOkY Mk FkO*xPxqkO*Y
‘P IkO¥PkQkD*B @k FKkO*kPxqxD*
‘dx FxOx*xqQ*D*®
‘P IKkOKkP*AxO*C [k F*O*kPxq*xO*®©
‘@xFxexg*0*(
‘ @x FxT*qxO*J
‘@xFkexqxOx(J
‘x Fxexg*D %P
PrAxTHAROKD @k FRT*kA*O*P
‘PxIKCkA*DxP ‘@x FkCxqxD%P
PrIxO*kPxAkD @k FAO*D*A%D
CQ*x FxOxq*qQ*D
Px kO kP*Q*xD C @x FkO*Pxq*xD
‘@x F*xOxQ*exg
‘PxAxOxPxCxg  ‘OxFkO¥PxCx{
C @k FO*QxY*q
PrIxO*PrYRA @k FAO*DP*Y*q
‘axFxO*xqxCxq
‘PxIkO*kPxCxq Ik FkOxPxCxq
‘PxIxg*O¥xCxg  ‘OxFxg*O¥Cxg
‘PxAxQxOxCxg ‘O FxQ¥kOxCx{
PrIxQrDxCxRq @k FRAxD*Cx]
‘PxIxg*O*Cxq  ‘ xFxg*D%Cxq
‘PxAxQxO¥xCxq ‘O xFxQ*xOxCxq

Pk Tk [k QkO*B*(
‘PxFRkO*P*xqxOxBxq
Pk TAO*P*Y*qxD
‘PxFxO*P*Cxq*D
‘PxFRO¥PHTxQ*KO
Pk FKO*I*¥CxkQ*kD
‘PxFxO*P*C*xqQ*D
‘PxFrIxOxIxCxH
‘PxFkQ*kOxIxCxg
‘PxFxg*O*P*Cxg
‘PxFkQkOxPxBxG
‘PxFrI*OxIxB%q
‘PxFxQ* Dk *C*q
‘P Fxg*xOxPxCxq
‘PxFkQ*kOxPxBxq
‘P Ix kP AkD*Y
‘PR FAOxT* Q%Y
‘PxFKO¥P*qxOxY
‘PxFxO*P*qQ*k D%
‘PxFxOx[*qQ*O%®
‘PxFKkO*¥PxqxO%®
‘P I¥CkIKO*([
‘PxIxTxqxO%(J
‘PxFxBxQxOx(Q
‘P I¥CkIKO*P
‘PxIxTxQxO*P
‘PxFkBxQxOxP
‘PxI*xOxPxqQxD
‘P IAOkkQ*D
‘PxFkOKkP*q*D
‘P IxOk *kCxg
‘P IxO*xPxBxY
P IO *IxY*q
‘P I*O*PxY*q
‘P IxOkKB*K]
‘PxFkO*PxCxq
‘P IxgkO*Bxg
‘P IxQkOxBxY
‘PxIxQxDxC%q
‘P IxgkO*Bx(
‘P IxQkOKBK(]



APPENDICES

‘@*A*D “PxA*D
‘Qxg*2 ‘PxgxD
‘qxqQx> ‘PxQxD

‘@xOx*d ‘PxD*d
‘Qxoxg ‘PxOxg
‘@x0*q “PxD*q
‘axoxq ‘PxOxq

‘axexd ‘pPxexg
‘axy*q ‘Pxyxq
‘axexq ‘Pxexq

‘axD*V “PxD*Y
‘QxO*Y ‘PxOxY

‘@xD*® ‘PkD*®
‘gxox®e ‘pPxOx®e
‘axd*¥ ‘PrgxY

‘@xA*Y ‘PrAxY
‘qxgxe ‘Prgxe
‘@xqxe ‘pxqxe

‘a*D ‘PxD
‘axo ‘Pxd
‘axd ‘pxd
‘axq ‘Pxq
e | ‘Pxy
‘qxe ‘pxe
‘a ‘p

CAxFrIkOKkP*CkA%D Pk FxIkO*PxCxq%D
‘P I*QkOkPkBRA*D  kFxq*kO*kP*CkqQ*D Pk FkkO*kPxCxqxD
CA*xFxIkOxq¥Ckq%D Pk FrT*k Ok *xCxqxD
CAxFKkAkOxA*CkA*D Pk Tk Qk Ok (I*C* Q%D
‘A*xFxg*O*P*CkQ*kD Pk FkTkOkPxCxqxD
‘P I*QkOKPKRRAXD kT AxOkPHCkQ*D Pk FkQkO*kP*Bx Q%D
CAxFRkO*AxQkO*CxT ‘PrIkOk(I*xQkOkCx{
Pk IkO¥P*kQk Ok QkFkO*kPxqxkOxCxg Pk IkOkPkQ*kO*Bx
‘P AkO¥PkARIKCK] QkFRO*kPxqxD*Cxq Pk FkOkPkQkI*kB*
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Reduced P#M:-words in normal form

A4

¢ %O ‘IxD
‘dxd ‘Ixd
‘dxq ‘Ixq
¢ AxY CIxY
¢ Ixe ‘Ixe
‘d ‘I
‘@xgxOo*exd ‘PkI*kOxCxg
‘@xqxOo*xexd ‘PkQkOxCxg
‘@xqQxDxexq ‘PxqxD¥Bxq
‘@xgx0*exq ‘PkE*D¥xBxq
‘@xqxO*exq ‘PkQkDxBxq
‘@kV*qxD  ‘PxVkA*D
‘@xexqxD  ‘PxExRA*D
‘gxexd*D ‘pxexgxD
‘axV*AxD  PkY*q*D
‘@xexqQxD  ‘Pxexq*D
‘axDxexd  ‘P*D¥Bxd
‘@xoxexd ‘PxOxexgd
CaxD*Y*A PxD*Vxq
‘axO*Ykq  ‘P*O*Yxq
‘@xD*exq  ‘PxD¥Bxq
‘@xOxexq ‘pPxOxexq
C@kA*D*Y  PrA*D*Y
CQxgxO*Y  PxI*OxY
‘axqQkO*Y  P*Q*O*Y
‘@xqQxD*e  ‘P*q*D¥®
‘dxg*0%e ‘pPxgxOxe
‘gxqQ*0%e ‘pPxQqxOxe
CQxD*RY  PHO*I*Y
‘axOxgkY  PHO*I*Y
C@kO*Q*Y  PrD*A*Y
CQxO*QAkY  PAO*QxY
‘axDxgxe  ‘P*D*dx®
‘@xOoxgxe  ‘PxOxgx®e
‘QxD*Axe  ‘PxD*qx®

‘@xOxqxe

‘pPxOxqxe
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€ AxA*D
¢ AxP*D
¢ AxQ*O
¢ AxP*D

¢ Ixq*D
¢ Axg*D
¢ Q%D

¢ AxA*d
¢ AxPxg
¢ Ax*q
¢ AxPxq

¢ x0*d
¢ dxOxg
€ AxD*q
€ AxO%q

¢ Axexd
CAkV*q
¢ gxexq

¢ AxQ*V
¢ AxPxY
‘ Ixqx®e
‘ Axpxe

¢ AxO*Y
JECEEY
‘gxDxe
¢ IxO0x®e

€ Axg*Y
€ AxqxY
 Axgxe
¢ gxqxe

‘I*a
¢ I*P
“d%D

“ IxA*D
C IxP*D
¢ IxQxO
¢ IxPxD

¢ Ikq*D
¢ IxgxD
€ FkQxD

‘ IxQxd
¢ IxPxg
‘ Ix0xq
¢ IxPxq

¢ Ix0*d
¢ IxOxg
‘ Fx0%q
“Ix0xq

 Fxexd
CIx¥xq
‘Ixexq

¢ IxQxV
¢ IxD*Y
¢ Fraxe
¢ Ixpxe

C IOV
CTHOXY
‘IxDxe
¢ IxO%®

¢ IxgxV
¢ FRQxY
¢ Ixgxe
¢ IxqQxe

‘Fxa
CFxP
“IxD
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Reduced P#M:-words in normal form

A4

¢ dxD*Pxe
¢ AxOxPxe

¢ AxQ*D*Y
¢ AKP*O*Y
€ ROV
¢ A*P*O*Y
¢ Ix@*O*e
¢ IxPxD*E
¢ Ax@*O*e
¢ AxP*xOxe

¢ AxQxD*Y
 AxgxO%Y
€ KAV
¢ dxqQxDxe
¢ Axg*Oxe
‘ AxqxO*e

¢ AxQ@xg*Y
¢ I¥P*I*Y
¢ A*A*A*Y
¢ I¥P*q*Y
‘ Ix@xg*e
¢ IxPxgxe
‘ Ix@*xq*e
¢ I¥P*q*e

C RO* IV
€ RO AV
¢ AxD*QxY
€ AxO*qxY
¢ AxDxgxe
¢ AxOxgxe
¢ AxD*qxe
¢ Axoxqx*e

‘ Ix0x*(Q
¢ AxD*P
Gl o

¢ IxD*Pxe
¢ IxOxPxe

¢ IxQxD*Y
¢ IAP*O*Y
C IR@*O*Y
¢ IxP*OxY
¢ Ix@*Oxe
¢ IxPxD*E
¢ Ix@*O%®
¢ IxPxOx®

¢ IxQxD*Y
C TRAHOKY
¢ IRQAO*Y
¢ IxQxDxe
¢ IxgkOx®
¢ FxQkOx®

C IR@* IV
¢ FADP*I*RY
¢ FR@kq*Y
¢ IxPxqxY
¢ Fr@xgxe
¢ IxPxgxe
¢ Ix(Qxqxe
¢ IxPxQxe

C IRO*I*V
C IxO*g*Y
¢ IxD*QxY
¢ IRO* QY
¢ IxDxgxe
¢ IxOxgxe
‘ IxO*qxe
¢ FxOxQx®

‘ Fx0*(Q
¢ IxD*P
¢ IxOxpP
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€ A*V*Q*D
‘ xexq*xD
¢ Axexg*D
€ A*xV*Q*D
¢ AxBxQ*D

kO *qxg
¢ IxO*Pxg
¢ AxO*Pxg
kD% (q*q
¢ IxD*Pxq
¢ A*xO*Pxq

¢ Ik@*xD*d
¢ AxPxD*g
‘ A*x@*x0*d
¢ AxP*O%g
¢ AxQ*D*q
¢ AxP*D*q
¢ AxQ*O%q
¢ A*xP*D%q

¢ AxQxexd
¢ AxPxexg
¢ Ax@*T*q
¢ I*P*Y*q
¢ dxQxexq
‘ I*xP*exq

¢ AxO*Bxg
¢ AxOxexq
€ AxO*Y*q
¢ A*Ox¥*xq
¢ AxDxexq
¢ Axoxexq

 AxOx*Y
€ ARO*P*Y
¢ AxO*P*Y
¢ AxOx(qxe

¢ FRV*qxD
¢ IxexqxD
¢ Ixexg*D
¢ IRV *q%D
¢ FxBxQ*D

¢ IxO*(Axg
¢ IxD*Pxg
¢ IxOxPxg
¢ k0% ([xq
¢ IxD*Pxq
¢ IxOxPxq

¢ Ix@*DO*d
¢ IxPxD*xg
¢ Fx@xO%xg
¢ IxPxOxg
¢ IxQxD*q
¢ IxP*D*q
¢ Fx(*O%q
¢ IxPxOxq

¢ IxQxexg
¢ IxPxexg
¢ Ix@*V*q
¢ IxP*Y*q
¢ IxQxexq
¢ IxPxexq

¢ IxDxBxg
¢ IxOxBxg
¢ IxD*Y*q
C IxOxYxq
¢ IxD*Bxq
¢ FxOxexq

¢ IRO*AxV
¢ IxO*P*V
¢ IxO*PxY
¢ IxOx( *®
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Reduced P#M:-words in normal form

A4

¢ AxD*PrI*Y
¢ ARO*DxxY
¢ IRO*Ax QY
¢ AxD*P*A*Y
¢ AxO*PxqxY
¢ AxOx*xgxe
¢ AxD*Pxg*C
¢ AxO*Pxgxe
¢ AxOx( *xqxe
¢ AxD*Pxqxe
¢ AxO*P*Qxe

C AxQxD*g*V
¢ AxPxD*G*T
¢ IR0 *GxY
C AxPxOx gV
¢ Ax@xD*q* T
¢ I*P*O*QxY
C AxQ*O*qxY
¢ AxPxOxqx Y
‘ AxQxDxgxe
¢ AxPxDxgxe
C Ax@*xO*xg*e
¢ AxPxO*xgxe
¢ AxQxD*qxe
¢ AxPxDxqxe
‘ Ix@*O*qxe
¢ A¥P*O*xq*®

¢ AxgxO%(q
¢ A*xqQxD%x(q
¢ Axq*D*P
¢ Axg*O%P
¢ I*xQ*D*P

¢ AxQ*q%D
¢ A*xPxq*D
¢ I@*xg*0
¢ AxPxg*D
¢ Axq*q*D
¢ I¥P*q*D

¢ IxD*PxG*Y
RO KDk Y
C RO QxQxY
¢ IxD*P*QxY
RO KDk QkY
¢ IxOx(I*xgxe
¢ IxD*Pxg*e
¢ IxO*PxgxC
¢ IxOx([*xqQxe
¢ IxD*P*Qxe
¢ IxO*P*Qxe

¢ Ix@xD*g*Y
 FADHD*E*Y
C PR+ OxG*Y
¢ IxPHO*xG*Y
 FR@*D*A%Y
¢ IAP*D* Q%Y
¢ Ix@xO*QxY
 FRD*O*QxY
¢ Ir@*Dxg*e
¢ IxPxD*kg*e
¢ Fx@xOxgxe
¢ IxPkO*xgxe
¢ IxQxD*qxe
¢ FAP*Dxqxe
¢ Ix@kO*qQxe
¢ FxPxOxQqQxe

¢ FxgxO%x(q
¢ IxQxOx(J
€ IxQ*D*P
¢ Ixg*O%P
¢ IxQxD%P

¢ IxQxq*D
¢ IxPxQ*D
¢ FxQxgxO
¢ IxPxgxD
¢ Ix(QxqQxD
¢ IxPxQxD
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¢ Ixg*Oxexq
€ AxQ*kOxBxq

¢ AxQxD*Cxd
 A*P*DxCxg
¢ Ix@*Oxexgd
¢ IxPxOxexg
¢ Ax@*D*¥*q
¢ IFP*D*Y*q
¢ AxQ*O*Y*q
¢ A*P*OxY*q
¢ Ix@xD*exq
¢ AxP*D*E*q
€ Ik *O*Cxq
“ IxP*Oxexq

¢ Axg*kOk*Y
¢ AxQxOx*Y
¢ A*QxDKP*Y
¢ Axg*O*P*Y
¢ AxQxO*P*Y
¢ Ixg*Ox(J*C
¢ IxQxOx(J*C
¢ A*QkD*P*e
¢ Ixg*O*Pxe
¢ IxQxOxPxe

¢ AxQxQAkD*Y
¢ AxP*A*kD*Y
¢ Ix@xG*O*Y
¢ A*PRr*kO*Y
¢ AxQ*qkO*Y
¢ I*P*QxO*Y
¢ AxQxQxD*E
¢ AxP*q*D*C
‘ Ix@xg*Oxe
¢ IxPxg*Oxe
¢ Ix@*xqQ*Oxe
‘ IxP*xQ*Oxe

¢ Ax Ok Qkg*Y

¢ Fxg*Oxexq
€ FxkQ*kO¥Bx(q

¢ IxQxD*Cxd
 FAD*DxCxT
¢ Ix@*xOxexd
¢ FxPxOxCxg
¢ PR@*D*¥*q
¢ IAP*D*Y*q
¢ IxQxO*Y*q
¢ FRP*OxYxq
¢ Ir@+Dxexq
¢ IxPxD*Exq
¢ Fx@*OxCxq
¢ IxP*Oxexq

 FRE*OxxY
¢ TRQAOx (kY
¢ IxQxkD*P*Y
 FRE*O*P*Y
¢ TRQAO*P*Y
¢ Fxg*Ox(xC
¢ FxQxOx(xC
¢ IxQxD*P*e
¢ Fxg*O*PxC
¢ FxQ*OxPxe

¢ IxQxQkD*Y
¢ FAP*QxD*Y
C TR@*g*O*Y
¢ IxPx*O*Y
¢ PR+ qQxO*Y
¢ IAP*QxO%Y
¢ IxQxQxD*e
¢ FAP*qxD*e
¢ Fx@xg*Oxe
¢ FxPxg*Ox®
¢ Fx@*xQ*Oxe
¢ FxPxQ*Oxe

C RO QrE*Y
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Reduced P#M:-words in normal form

A4

‘ A¥O*P*Q*kDO%B  FkOkPk(*O%®

¢ Axexg*x0x(d
¢ AxV*Q*kO*(Q
¢ AxexqQ*x0x(J
¢ I*Y*Q*D*P
¢ AxexqkD*P
¢ Axexg*O*P
¢ I*Y*QxO*P
¢ A¥C*xqQ*kO*P

¢ I*D*P*q*D
¢ AxOxPxqQxD
¢ AxOx@*q*D
¢ IxD*kP*qQ*xD
¢ AxO*P*qQ*D

¢ Ix*Y*q*D
‘ AxPxVxqxD
‘ Ax@xexq*D
¢ I*P*Bxq*D
¢ Ax @ C*xg*O
¢ A¥PHCxg*D
¢ Ix@kY*q*D
¢ AxPxY*qxD
¢ Ax@*C*xq*D
¢ IxP*xe*xQqQxD

¢ AxO*x(@*exg
¢ AxD*Pxexd
¢ AxO*P*exg
¢ AxOx[x¥*q
¢ IxO*PxY*q
¢ AxOxPx¥xq
¢ AxO*x(@*Cxq
¢ AxD*P*Exq
¢ AxO*P*kBxq

‘ Ixg*Oxexd
¢ AxQ*O*xexg
¢ AxqxDxexq

¢ IxexgxOx(
¢ IxVxQxO%(
¢ FxRxQ*xOx(
¢ TRV *QxD*D
¢ IxexqQkD*P
¢ FxkRxG*OXxP
¢ IRV *QxO*D
¢ FxexQqQ*D %P

¢ IRO*P* Q%D
¢ IxD*P*Q*D
¢ FxO*(*qQ*D
¢ IkO*P*Q*D
¢ FxOxP*QqQ*D

¢ TR+ V*A%D
¢ IxPxY*Q*D
¢ Fr@¥Bxq%D
¢ IAP*BRQ%D
¢ Fx@xexg*D
¢ FxPxCxg*D
¢ Pr@*Y*Q*D
¢ IxP*YxqxD
¢ Fx@xCxQqQ*D
¢ IxP*ke*xQqQxD

¢ FxOx(xexg
¢ IxD*Pxexd
¢ FxOxPxCxg
¢ RO QxY*q
¢ IRO*PxY*q
¢ IxO*PxY*q
¢ FxOx(¥Cxq
¢ IxD*Pxexq
¢ FxOxPxCxq

¢ Fxg*xOxexd
¢ FxQxOxexg
¢ FrQxDxEx]
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¢ AxD*P*T*q*D
€ IAO AP TA*D
¢ AxD*Pxexq*D
¢ AxO*P*C*xq*D
JEEOL <L) FreERe)
¢ AxO*P*Y*q*D
¢ AxO*x ¥R Q%D
¢ AxD*P*e*qxD
¢ AxO*P*C*xqQ*D

¢ Axg*xO*xdxCxd
¢ AxQ* D¢ *C*g
¢ Axg*O*xPxexg
¢ AxQxO*xPxexg
¢ Ixg*O*x *C*q
¢ Ax QD¢ *C*q
€ A*Q*D*P*Eexq
¢ Ixg*O*¥P*B*q
¢ AxQ*D*xP*exq

¢ Ax@*g*O*C*xg
¢ A¥Pxg*O*xCxg
¢ Ax@xQ*Oxexg
¢ I¥P*Q*D*Cxg
¢ AxQxqQxD*exq
¢ AxPxqQxDxexq
¢ Ax@*xg*O*B*q
¢ A¥P*g*O*xC%q
¢ Ix@xQ*Oxexq
¢ I¥P*Q*O*B*q

€ ARO*P*A*D*Y
€ A*O*PxQ* DY
¢ AxOx@*Q*O*Y
€ ARO*P*A*O*Y
¢ AxO*¥P*qQ*kO*Y
¢ AxD*PxqxD*e
¢ AxO*P*xq*DxC
¢ Ak *qQ*O*®
¢ AxD*¥P*qQ*O%®

¢ IxD*P*T*q*D
€ IAOAP*TkA*D
¢ IxD*Pxexq*D
¢ FxO*P*C*xq*)
€ IROH Pk #D
¢ FkO*P*Y*qQ*D
¢ IOk *C*xqQ*D
¢ IxD*P*exqxD
¢ FxO*P*C*xqQ*D

¢ IxgxO*xQxeCxd
¢ FxQ#O % *C*xg
¢ Fxg*O*Pxexg
¢ IxQkO*xPxexg
¢ Fxg#O*x( *C*q
¢ FxQ#Dx(Q*Cxq
¢ IrQ*D*P*ECxq
¢ Fxg*O*P*Bxq
¢ FxQ*D*Pxexq

¢ Fx@*g*O*Cxg
¢ FxPxg*O*xCxg
¢ Ix@xQ*Oxexg
¢ FxP*Q*O*Cxg
¢ Ix@xqQxDxexq
¢ IxPxQxDxexq
¢ Fx@*g*O*Cxq
¢ FxPxg*O%Cxq
¢ Fx@xQ*Oxexq
¢ FxP*Q*D%Bxq

€ IRO*P*A*D*Y
¢ IxO*PxQx DY
¢ IOk I*qxOxY
€ IRO*P*Q*O*Y
¢ FkO*P*Q*O*Y
¢ IRO*PxQkD*B
¢ FxO*P*xQ*Dxe
¢ FxO*x( *qQ*O*®
¢ IxD*P*qQ*Oxe
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Reduced P#M:-words in normal form

A4

¢ A*xQ*D*PxC*q*D
¢ AxG*O*PkCkA*D
¢ Axqx Ok P*Cxq*D
¢ Axg*O* *kCk*D
¢ AxQ* Dk *Ck kD
¢ Axq*xD*P*Cxq*D
¢ AxG*O*P*kCk*D
¢ AxQ*D¥PkCkQ*D

¢ AxO*@*q*kO*Bxg
¢ AxD*¥P*q*kOkBxg
¢ AxO*P*xq*kOxCxg
¢ A*xD*PxQxD*C*q
¢ AxO¥P*Qk Dk
¢ AxOx@*q*xOxB*q
¢ AxD*P*Q*kO*Bx(q
¢ AxO¥P*QkOkB*(Q

¢ IxQxD*PxCxq%D
¢ Ixg*O*PKRKA*D
¢ FxqxOkP*Cxq*xD
¢ TGOk *BkQ*D
¢ IxQ Ok KRk *D
¢ FxqxD*P*CxqxD
¢ Ixg*O*P*kBkQ*D
¢ IxQkO*PkRKQ*D

¢ Ik k@*kQkO*BxT
C IxD*¥P*QkOkBxG
¢ FxOxP*xQ*xOxBxg
¢ IxD*PxQxDxBxq
¢ IAO¥PkQrI KRR
¢ FxOx*Q*xOxBxq
¢ IxD*¥P*QkO*Bx(q
¢ IAO¥PkQkO*BK(Q
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APPENDICES

‘QxO*P¥exq ‘gkOkPkBk( ‘QxOx( *xexqQ ‘g*xO*x *kCxq

‘QrD*PxV*q
‘QxOxPxexg ‘gkO*kPkBx{ ‘qQxOx@xexd gDk *Cxg
‘qQxOxPxe ‘g*xO*Pxe ‘qQxD*Px*e ‘QxOx(I*® ‘gxOx(Qxe
‘QROAPHY  GHO*PAY  QrDADPHY  CQAkOxQxY  GxOx(kY
‘QxOxp ‘gxOxp ‘qQxD*pP ‘Qxox(q ‘gxOx(q

ReEZoPY oF% £3-F1e Pe I o JN FRoPY oE €3 -Fe PRe FY o]
¢ QxD* P IxTxqQ*D%P
CQxOk @k FACxI*kO*P xOk((* FkCxT*kO*P
‘qxO*P* ¥k Ak D*P xOkP* IxCx Ak D*P
‘ QxD* P I*Txq*kD*P
‘QxO*PkF¥CxkAk O  xOkP* FxCx kO *(
CQDHP* Ix Y% %[
QO @k IkCkIKOk([ ‘ GxOx(x FxCxg*O*(

CQxO*P*kFkBkQ*kD Gk OkPk F¥Bx Q%D CQxO*P* xBkQkD Gk OKkPk I¥Cx QD

¢ QDK P Tk YD ¢ QD * P YD
QO @k T¥CkI*D GrOk Ik FxCxGxD

CQxO*P*kFxBkA*kD  xO*kPk F¥Bxq%D CQxO*P*IxCxkAkD  GxO*kPkI¥Cxq%xD

C QkD* P TV *q*D f QkD* P KT *q*D
‘QxO*P*xF*xCxq  ‘gxOxDPxI¥Cxq QO xIkCxq ‘O *xF*¥CkQ  ‘QxO*DPxJ¥Cxq  ‘gxO*DPxJ¥Cxq

“QxD*Px Fx T “QxD*Px IxT*q
‘qxOxP*xFxCxd  ‘GkO*PxFxBx{g ‘QxOx@kF¥xCxd  ‘GxkOk@xFxCxd  ‘QkOxDPxIxBxd  ‘GxOxPxIkexd
‘Q#O*P*I*® ‘g*xO*P*I*® ‘Q*D*P*I*e ‘QxOxQ*F¥e ‘gxOxQxFxe ‘Q#O*P* k€ ‘GO %Pk J*© ‘Q*D*P*J*©
‘QxO*kPxIxY “GxOxPx IxY ‘QxD* Pk IV QO FxY CGx Ok FxY ‘QxO*PxI*Y “ GxO*PxI*Y ‘QxD* Pk Y
‘QxOxPx T ‘gxO*Px T ‘QxD*P* T ‘QxOx(x T ‘gxOx(x T ‘QxOxPxk.g “gxO%Pxk.g QD% Pk

e oy

‘exq ‘Yxq ‘exg

‘exqk0 ‘YxqxD ‘exdxD ‘Bxqx) ‘Yxq*D

‘exQxO4P ‘YxQkOkP ‘BxGkO*kP ‘BxQxD¥P ‘TxQkD*kP ‘BxAxkOx([ ‘YxqxOx( ‘exg*0*(

‘@xQxO*P*T ‘TkQkOKkPkF ‘CxgxkOxPxF ‘CkQkD*¥P*kT ‘YkQkD*kDPkF ‘CxQxkOx *F ‘YkQkOkQkF ‘CxgxOx( xF
‘exQxO*P*d ThAKkOKkDPkd ‘CxGxO*Pkd ‘CxkQkIkPkA  TRAXkD*kPx

FAPa@oDqigee‘y :pexepio siojzersuss UYITM
‘9=y ueyMm spiom g-pow Jeueld
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Reduced P#M:-words in normal form

A4

‘OxP*I¥C*xq*D ‘OxPxFxCxqQ*D OxP*J*CkqQ*D ‘O*DP*J¥C*xqQ*D
“O%Pk Fx k%D ‘O*P* IxT*A*D BRE 1 3 £1eET0) ‘DDA IXT*A*D
‘OxPxFkq*kOx® COXPkFkQxO%xC ‘OxPxJkq*kOx® COXPkIkq*OxE
‘Ox * Fxg*O*®
COxPxFkQ*D*C COXP* FxqQxDx® COxPxIkq*kD*C ‘OXPxIxq*xDxC
OxPxIkq*kOxY COXPkFkqxOxY COxPxIkq*OxY COXPkIkA*OxY
Ox@* T I*O*Y
“O%DP* FxQkD*Y CO*P* Fx Q%D+ Y “Ox Pk AxqxD*Y C DkPHI*A%D*Y
OxPkFxqxD CO*PxFxq*D OxPkJkq*D € O*PxIkq*D
“Ox(*Fxg*D
%Pk Tx Q%D ‘D*P* Fx Q%D D% PHI*A%D ‘ D*P*Axq%D
‘OxPxF¥exq ‘O*P*I¥xexq ‘Ox( xF¥exq ‘OxPxJ¥C*q O*P*J*Bxq
COxPx I ‘OxPx IxTxq Ok FRY*Q “OxPxI*T*q ‘OxPxAxT*q
‘OxPkIxexg COxPxIxexg COx@kFxexd COxPxJkexg COxPxIkexT
‘OxPxFxQxe ‘O*P*xI*xqQ*e ‘Ox( xFxqQxe ‘OxPxJ*xqQ*® ‘O*P*J*q*®e
‘OxPxFxgxe ‘O¥PxIxgxe ‘Ox(x Fxgxe OxPxIxgxe CO*PxIxgxC
COKD* TxQkY € O*P* TxQkY COk@¥ TrQxY oA PAI*AkY CO*PHI*AxY
COxPk Trg*Y CO*Px IxgxV Ok @k Frg*Y COxPrJxg*Y ‘OxPrIxg*V
‘OxPxIxq ‘O*PxFkq “Ox(xFxq COxPk Ik ‘DxPx A%q
‘OxPxIxg ‘OxPxFxd “Ox(xFxg ‘Ox Pk Axd ‘O*Px gxg
‘OxpxJIxe ‘OxDPxFxe ‘Ox( *JIxe ‘OxPxJxe ‘D*PxJxe
‘O%DP*IxY COkDP* IV oK@+ IV KPR IRV FOKkPH XY
‘OxPxJ ‘OxPxJ “Ox(xJ ‘OxPxg ‘OxPx g
‘qxe ‘gxe
‘axy ‘g*v
‘q@ ‘g

‘Qx0xexq ‘gkOkBx(q

‘QxD*Y*q

‘QxOxexg ‘grOkexg
‘qxOx®  ‘gxOx® ‘qxDx®
‘QxOxY  ‘gxOx¥  QxDxY
‘qxd ‘gxo ‘qxD

‘Q#O*P*C*xQ*D GkOkPkBkQ*D
‘ QkD*P* Q%D
‘qxOkI¥Cxg*D
‘QxO*PxCxqQ*) GkOkP*BxQ%D
QD * P Y*A*D

CgxOkkCHT*O
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COx(@* Fxg* Ok *C*q
COkPrA*QRDKPKYRA DKk Pk AxAkI*kP*Y*q
COxPkFxA*kOkPkBxT  DxkPxkFkq*kOkPxCx{g

APPENDICES

‘Ox( * Fxg*O*¥P*Cxg
OXPkFxQxOxkAkC*H  D*P*kFxqxOx(I*C*xg

COx(k FrI*OkIKkCKET
OxPxF*¥CxQ*D%P  ‘D¥P*kFI¥C*kQ*kO*P
COXPkTkTxA*OKP Dk P*FxTxAkO*P

OxPkFkBxQxO k(]
‘OxPxF*xY*Q*0%(

‘OxPxFxqQ*D*P*®

‘OxPxFxqQ*D*x(J*©

COxPkFkQxO*kPxY

COxPkFxQxOkIkY

OXP*FxQ*kD*P

COxP*IxqQ*0%(

‘OxPxF*xqQ*D*Cxq

COKP* I QDK *q
‘OxPxFxQ*D*Cxg

OxPxFkBKQ*xD
OXxP*I*¥YT*q*D

COxPxFxBxqxOx(J
€ O*Px Ik O%(

‘O*P*IxQ*D*P*®

‘O*P*FxQ* Dk *©

€ D*P* TxQxO*D*Y

€ O*P* TxQx D% A* Y

€ O*Pk FkQkO*P

‘O*Px Fxq*kO%(J

‘O*DP*I*Q*kO*kBk(

CO*P* IxQxD*Y*q
‘O*P* IxQ*O*kCxg

CO*Pk FkBxQ*D
€ O*Pk Tk kD

COx(k FKkRkTKO*P

COx@*k FRRKIKO*(

COx@* FHIKO*kP*EB

COx@* FRIKO k(KR

COx@* IRk O*P*Y

COx@k IRIROK Y

COx(k FkI*O*P

COxk Fxg*Ox(

COx@* FRIKOKRK]

Ok FRIKOKRKG

Ox@* FxCxg*D

COxP* J¥CxQ*kD*P
DK PHI*THA*D*P

COxPkIkqxIKPkKE

Ok Pk Ik Ak kDK Y

‘OxPxJ*xqxD*P

‘OxP* JxQ*D*B*q

COxPAI*QAD*Y*q
‘OxP* JxQ*O*Bxg

‘OxPxJkCkq%D
OXP*JkY*Q*O

‘ O*PxJxCxqQkD*P
C D*P*Ix V%D *P

‘D*P*IxQkD*DxE

¢ DxPx Ixqk DK P*Y

¢ O*Px *xqkD*P

O*P*I*Q*kO*kBx(

CO*P*IxQxD*Y*q
‘O*P*IxQ*kO*kBx{

CO*PkIkBHQ*D
€ O*Px IxFxQkD
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Reduced P#M:-words in normal form

A4

“OxPxQxD*Y*q ‘ D¥PxQxD*Vxq
‘OxP*xQ*O¥Cxg ‘DkPkkOkBxY

‘OxPxCxQ*D  ‘D*kP*kBkQ*D
COxPxY*Q*D  ‘DkP*FxqxD

‘OxPxexQ*) ‘D*P*kBkQ*D
OXkDP*Y*qxD  D*¥P*VxA%D
‘OxPxQkO%€  ‘DxPkq*kOx®

OxPxQ*kD*8  ‘DkP*qxD*®
‘OXPxQkOkY  DkPkAkOkY

OkP*QxD*Y  D*¥PxqQxD*Y
‘OxPkQqQ*D ¢ D*xPxqQ*O

“OxP*qkD ‘DxPxq%D
‘OxPkBx(q ‘DxPxexq
OxPxYxq  ‘D*PxYxq
‘Oxpxexqg ‘OxPxexq
‘OxP*xQqx®e ‘DxPxqQxe
‘OxPxgxe ‘O*Pxg*e
‘OxPx kY ‘ OxPxqx Y
OxPHEXY DX DxE*Y

‘oxpPxq ‘0xPxq
‘oOxPxg ‘OxPxg
‘oxpxe ‘OxPxe
‘O%P*Y ‘O*P*Y
‘oxp ‘%P
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COx(kg*OxCxg

Ox(xCxg*D

Ox@*xg*O*®

COx@*xg*O*Y

‘Ox( *g*D

Ox(kBxq
COx(QxY*q
‘ox(xexq
‘Ox(kqx®e
‘Ox( xgxe
“Ox(IxA*Y
Ok gxY
“ox(Qxq
‘ox(@*xd
‘ox( x®
COxQxY
Coxq

OXP* Tk QkOkPkCkQ*kD  DkPk FxqxO*xP*C*q*D
Ok FHI*O*PKRKQ*D

COXPkIKAxI*kPRkTkAxD Dk PkIx Ak Dk Pk Y+ q* D

OXP* Tk Qk Ok kCkT*kD  DkDPk Fxqxk Ok *CkT*D
COx@k Tk Ok IKRKI*KD

COXPkFkA*xO*kPkCxAx) DkPk FxQxDkPkBxq%)
Ox@* Ik Ik OkPkBkA*D

COxPx I A*D*PRT*A%D DxPxAxqxkD* P T A%D

COxPkFkA*OkPkBxG DxPk Fkq*xDkPxBxq
‘Ox( * Fxg*O*P*kB*(

COXP*TxQk Ok kK] D*kPk FxQqx Ok *C*q



APPENDICES

‘PxIxOxg
‘PxFxO%d

‘PxIxexq
PrIxTxq
‘PxIxexg

‘PxFxOx®
‘PxkTxDE
‘P IxO*Y
Pk TV

‘PxIxqxe
‘P Txgxe
‘PR TV
‘P Ixgxy

‘PxI*O
‘PxIxD
“PxIxq
‘PxIxg
‘PrIxe
‘PxFxY

‘PxF

‘QxFxOxg ‘P IkO*d
‘@ IxD*d ‘P*AxD*d
‘@xIxexq ‘PrIxexq
@k FHV*q Pk A*T*Q
‘axFxexq ‘pxgxexq
‘QxF*kOxe ‘pxI*xOxe
‘@xF*Dx® ‘PkI*DxE
¢ @xFRO*Y ‘P IkO*Y
C @ IxD*Y ‘PHIXD*V
‘QxIxqxe ‘PrIxqxe
‘QxFxgxe Pk Ixgxe
C @k TV ‘P I¥QxY
C @k FH*Y ‘PxIxgXY
‘axFx0 ‘PxgxD
‘axF*0 ‘PxA*D
‘axFxq ‘PxAxq
‘axIxd ‘PxAxd
‘axIxe ‘Prgxe
JeER2 4 ‘PrIXY
‘axF ‘Pxd

‘oxexq ‘Dxexq
“OxVxq ‘DxVxq
‘oxexg ‘Dxexq
‘OoxQxe ‘DxQqxe
‘oxgxe ‘Dxgxe
O%qxY  O¥qxY
OxgxY  OxgxY

‘oxq  ‘Dxq
‘oxgd  ‘Dxg
‘oxe  ‘Dxe
oxy DXV
nU no

‘OxP*Q*D%Bx(q ‘DkPxkOxBxq
‘Ox( xg*O*Cxq
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Reduced P#M:-words in normal form

A4

‘PxFIkO¥Bxq
‘P IxD¥BRQ
‘PxIxOx¥xq
‘P FRO*Vxq
‘PxFkO*xCxg
‘PxIxDxBxg

‘PxFkO*PxC

‘PxFIkO*x(IxC
‘P IO*PxY

Pk TROx(IxY

‘P I*qQ*kO%®
‘PxIxgxO%E
‘P I*xqxD*e
‘PxI*QxOxY
Pk TgxOxY
‘PR IxQxD*Y

‘PxIxOxqQxe
‘PxIxDxqxe
‘P IxOxg*®
‘P IkDxgxe
‘PR IOxQxY
‘P IxD*qQxY
Pk IO xGxY
‘PR IAO* Y

‘PxI*O%P
‘PxIxOx(q
‘PxIxqQxD
‘PrIxg*D

‘PkTHq*D

‘PxI*O%xq
Pk THD*q

‘QxFkO*Bxq
‘@xF*DxBxq
CQxI*OxY*xq
‘@xF*O*V*q
‘dxFkO*xexg
‘QxIxDxexg

‘dxFkO*DPxe

‘QxFkO*x(xC
¢ @k THO*P*Y

@ FHOxQ*Y

‘@*F*qQ*O%®
‘axIxg*O*e
‘QxFxqxDxe
CQxI*QxIxY
@ FHE*O%Y
@k THQxD*Y

‘a*FxO%xqQxe
‘@xFxDxqxe
‘@*I*xOxg*e
@k FHOxgxe
¢ @k THO*QxY
CQxI*D*AxY
@ FHOxgxY
@k THO*I*Y

‘ @x F*O*P
‘@xI*O*x(q
‘@xI*qxD
‘@xIxgxD

@k F*qxD

‘QxI*O%q
@k F*0O*q

Pk JxO¥Bxq
Pk IxD*BR]
‘PrI*OxFxq
‘PrI*kD*T*Q
‘PxAkO*xCxg
‘PrIxDxexg

‘PrIxD*Pxe

Pk I*D*P*Y

‘PxJxqQ*D%®
‘PxIxg*O%C
‘PrIxqxD*E
‘PrI*QxO%Y
‘PrIx*O%Y
Pk IxQ*D*Y

‘PxAxO%xqQxe
‘PrIxD*qxe
‘PxJxO*xg*e
‘PrIxDxgxe
Pk IO * kY
‘PrI*D*AxY
‘P I*OxgxY
Pk IxD*I*Y

‘PxI*D*P

‘Pxg*q*D
‘PrIxg*D
“PrA*q*D

‘P IkO*q
‘P IkD*A
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APPENDICES

‘PxFxg*O*P*®

‘PxFkQ*kOx(xC
‘PxFxg*O*x(I*C
Pk FHQxO*D*Y
Pk TAg*O*D*Y

Pk FHQx Ok T*Y
Pk TAGHOxT*Y

‘PxFkO*Pxqxe

‘PxFxO*x[*qQ*©
‘PxFxOxPxgxe

‘PxFxO*xq*g*C
‘PrIxO*kPxA*Y

‘P IxOx(qxqxY
‘PrIxO*kPrg*Y

‘P IxOxQxg*Y

‘PxIxqQxOxP
‘PxIxgxOxP

‘PxIxqQxOx(q
‘PxIxgxOx(Q

‘PxFkBKkQ*D
‘PxIxVxQxD
‘PrIxCxEAD
‘PxIxBxqxD
‘PxIxVxqxD

‘PxIxOxPxq

‘PxIxOx(qxq
‘PxI*OxPxg

‘PxIxOx(xg

‘x Fxg*O*Pxe

‘@xFkQ*xOx(x®
‘Qx Fxg*O*q*C
@k FQ*O*DP*Y
C @k FHI*O*D*Y

@k FQx O+ Y
C @k FHG*O*A*Y

‘@xFkO*¥Pxqxe

‘@*xF*xO*xQ*qQx*e
‘x FxO*Pxgxe

‘xF*xO*xqxg*e
 @x F*O*P*AkY

¢ @x IxOxQxQxY
 @x FRO*PxI*Y

¢ @x TxOxQrg*Y

‘QxF*qx 0P
CQxTxg*O*P

‘@xF*qxOxq
‘QxIxgdxOxq

‘@xFxB*xqQ*D
CQxI*Y*q*D
‘axFxexg*0
‘@xFxexqxD
CQxI*T*q*D

‘@xF*OxPxq

‘ Qx FxOx(*q
‘QxI*OxPxg

‘ Qx FxOx(xg

Pk I*qxD*P*B

‘PxA*QxD*P*Y

Pk I*D*PrA¥B

‘P I*D*PrI*C

‘PR I*O*PrA%Y

‘PRA*DKPRI*Y

‘P I*q*D*P

‘PxAxBxQ*D
‘PrI*T*q*D
‘PxIxCxI*D
‘PrIxexq%D
‘PrI*T*q*D

‘PxI*xD*Pxq

‘P*I*D*Pxg
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Reduced P#M:-words in normal form

A4

‘PxFxQ* D¢ *C*xg
‘PxFrIxOxIxCxH

‘PxFxO*P*qQ*O%®

‘PxFRO*I*xI*O*®
‘PxFxO*P*qQ*k D%

Pk FKO¥P*qxOxY
PxFRO*AxI*OxY
Pk THO*PHA*D*Y

‘PxFKCxQ*xOxP
‘P I*TxQ*kI%P
‘PR FxCxIO*P

‘PxFxexqQx0%(
‘P T *AxO*Q
‘PxIxexg*O*(

‘PxFKkO*¥P*qxD
Pk IOk g*D
‘PxI*O*P*q*D

‘PxF*xD*P*Bxq
‘PrAxD*Pxexq
‘P TAO*PxY*q
‘PrI*Ox(QxY*q
‘PxFxOxPxCxyg
‘PrIxD*Pxexg

‘PxFxQxO%Cxq
‘PxFxg*xOxxq
‘PrI*QxkD*T*q
‘PxFxQxOxCxg
‘PxFxg*xOxCxg

‘PxFxQxO*Pxe

‘@* FxQ* Ok *C*xg
‘A*x Fxg*O*xO*xC*xg

‘@*F#O*P*qQ*kO*®

‘AxFkO*T*xIxO%®
‘A*F#O*P*qQ*kD*®©

C x FkO*P*qxOxY
CA*x FRO*@x KOV
¢ @k FHO*P*A*D* Y

‘@x FkR*qx 0P
¢ @x I*Y*Q*O*P
‘x Fxexg*D*P

‘axFxexqQ*xd*(J
C @k FHT*AxO*Q
‘@xFxexg*0*(

C@x FKO*¥Pxq*D
‘@*x F*kO*xq*g*D
 @x F*O*P*qkD

‘@*xF*xO*Pxexq
‘PxFxOxI¥Cxq
@k FO*PxY*q
C@xI*OxQxY*q
‘@x FxOxPxexg
Pk IxOx(xexd

‘axFxqQ*Oxexq
‘@xFxgxOxexq
C@xI*QxD*T*q
‘ax FxqQxOxexg
@k FxgxOxexg

‘x FxqQ*OxPxe

PxIkD*¥P*qxkO%B

Pk I¥D*PRA*DKE

‘P I*D*PH %O *Y

‘P I*D*PHAkD*Y

Pk I*BXQxD*D
‘PxA*V*qxD*P

‘PxA*D*PxqQxD

‘PxAxD*kPxq*D

‘@ FROk@KR*KQ
‘P I*D*PxY*q

‘x FkO*xQxexd

‘P A*QkOKBK]
‘PxIxg*kOxCxq
‘PrI*QxD* T
‘P A*qQkOxBxYg
‘PxIxg*xOxCxd
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APPENDICES

‘Pxq ‘axq

‘Pxd ‘axd
‘pxe ‘qxe
‘P*V ‘a*v
‘p ‘a
PRIRQAOKDKCKQ%D Qx FAQxkO*PKB*q*D
P IkIkO¥P*CkA%D ¢ Ik FxIkOkP*Cxq*D
‘P I*Q*D*PxT*q*D
PrFRQkOkAKRKI*D k FRQk Ok *BKT*D
PrIkIkOxIxCkI*D @k FrIkOk(I*CxT*O
‘P IxQ*O*¥PkCkQ*D Mk FrkAkO*kPxCxq*D
‘P IxIkO¥PkCkA%D Mk FrT*kO*kPxCxq%)
Pk IxQxD*P*Yxq*D

‘P IAO¥PkQkO*BK] @k FRkO*kPxqxO*Cxq Pk Ik DkPkQkO*kB*(

‘PxFRkO*TxI*xOxBxq
‘P I*O*Px kDT

‘PxIkOkP*QxI KBk

PR IAOxTxIkOkCkY

‘PxFkO*P*C*xq*D

‘PxIkOkPHYTxQ*kO

‘PxFxOxI¥CxT*D
‘PxIkOkPxCXA%D

Pk FAO*P*Y*qxD

‘PxFxQxD*xPxCxq
‘PrIkIkOxPxCX]Q
‘PxFxQ*D*x *C*q
‘PxFxgxOxI*C%q

‘PxFxQ*D*P*Cxg
‘PxFxg*O*xPxCxYg

CAx FxOk*xIxOxCxq
C@x IxO*kP*QxD*Fxq

‘PxA*D*PxA*D* T
CA*x FxO*kP*QxOkxg

Pk I*D*¥P*kQkO*BxET
@ TRk @K IKO*B*T
‘@*F*#O*P*C*kqQ*D

‘PxA*D¥PCxqQ%D
CAx FKkO*kP*YxQ*O

‘PrI*D*PxFxq*D
‘A FxOxq¥CkI*D
‘Ax IxkO*kPxCxq%)

‘PR I*kDHPHEKA%D
¢ @k FHO*P*Y*q*D

‘P I¥D*PHY*q*D
‘@* FxQ*O*¥PkCxq
‘AxIxI*O*xPxexq
‘@* F*Q* Ok *kB*q
‘@ Fxg* Ok k]

‘P I¥Q*D*P*Y*q
‘*F*Q*O*P*Cxg
‘A* Fxg*O*xPxCxg
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Reduced P#M:-words in normal form

A4

‘PxQxOxe
‘pxg*xOxe
‘PkQxDE
‘PxQAD*Y
‘PRE*O*Y
‘P*QxD*V

‘pxOxQqxe
‘PrO*qQxe
‘PxOxgxe
‘PxO*gxe
‘PEOXQxY
‘PRD*AXY
‘PO G*Y
‘P*D*I*V

‘PxqxD
‘PxgxD
‘PxQxD

‘PxOxq
‘PxDxq
‘PxOxd
‘PxO*d

‘pxexq
‘Pxyxq
‘Pxexg

‘pPxOx®e
‘PxDxe
‘PxO*Y
‘PxD*Y

‘pxqxe
‘Pxgxe
‘PxQxY
‘PrE*Y

nﬁ*U
“PxD

‘@xqxOxe
‘@xg*Oxe
‘@xq*Dx®
¢ QxQkO*Y
C @xg*O*Y
f@*Q*D*V

‘@xo*Qqxe
‘@xO*qxe
‘@xOxgxe
‘@xO*gxe
C@xO*qQxY
¢ @xD*AXY
¢ @xOxg*Y
f@*O*E*V

RETE]
‘Qxg*>
‘axq*D

‘axo%q
‘axD*q
‘a*ox*d
‘@xD*d

‘axexq
‘axy*q
‘qxexd

‘dxox®e
‘qxDxe
‘@xO*Y
ETEN 4

‘@xqxe
‘gxgxe
Ca*q*Y
‘Q*d*Y

.Q*U
“axd

213



APPENDICES

¢ IxOx® ¢ IxO0x®e

¢ FxDxe ¢ qxD*e
¢ FxOxY ¢ IxOxY
¢ IxD*Y ¢ AxD*Y
‘ Fxqxe ‘ Ixqxe
¢ Ixgxe ¢ dxgxe
¢ FRAxY  AkA*Y
¢ IxgxV  AxgxY
¢ Ixp ¢ AxP
‘IxQ ‘Axa
‘IxO ¢ %0
“IxD ‘AxD
‘Ixq ‘dxq
‘Ixd ‘dxd
¢ Ixe ¢ x®e
C Iy EEY
‘7 ‘d
‘PxQxDxCxq ‘ @kQkO*kB*(]
‘PxIxOkxq IxI*kOxTxq
‘PxQxD*Vxq  ‘Q+xq*D*Vxq
‘PxQxOxCxg ‘ kQkO*BkG
‘PrgxOxxg  IxIkOkCxg
‘PxexqxD  ‘(xexqxD
‘PRY*QxD  CQxTRAAD
‘PxexgxD  (xexgxD
‘Pxexkqk) @¥B*q*D
‘PRY*QxD  CAxTkA*D
‘PxOxexq ‘(gxOxexq
‘PxD*ERq  I*D¥Bxq
‘PRO*YRQ  @xO*Vxq
PRORYRA  @*D*V*q
‘PxkOkBxg  ‘IkOkTx{
‘PrDxexrg  IxD¥Bxd
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Reduced P#M:-words in normal form

A4

¢ FxOxQxe
¢ IxDxqxe
¢ IxOxgxe
¢ IxDxgxe
¢ FRO* QXY
¢ FAD*A*Y
¢ IxOxgxy
C FRO* IV

¢ IxOxpP
¢ TAD*P
‘ IxOx(q

¢ FkDP*D
¢ IxQ*O
¢ IxP*D
€ Ix@*D

¢ IxQ*D
 Fg*0
¢ Ikq*D

¢ IxPxq
¢ IxQxq
¢ IxDxd
¢ IxQxg

¢ IxOxq
‘ Fx0*q
‘ IxOxg
¢ IxDxg

‘ Ixexq
CIxVxq
¢ Frexd

¢ Ixpxe
¢ Fr@xe
¢ IxPxY
¢ IxA*Y

¢ Ax0*QqQxe
¢ AxD*qxe
¢ AxOxg*®
‘ AxDxgxe
€ kO* QY
€ AxD*A*V
¢ AxOxgxY
C AxO* IV

el o
¢ IxD*P
‘ AxOx(q

¢ IxP*2
¢ Ax Q%D
“ A¥P*D
¢ AxQ*D

i CRe o)
¢ Ixg*0
¢ IxA*D

‘ IxP*q
‘ Axq*q
¢ AxPxg
‘ IxA*d

i Cele]
‘AxD*q
¢ AxOxg
¢ dxDxd

‘dxexq
‘AxV*q
‘ Ixexd

‘ dxpxe
‘ Ixqx®e
¢ AxPxY
¢ Axq*V
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¢ Fx@xexd

¢ IxOxexq
¢ IxDxexq
¢ IxOxY*xq
¢ FAD*V*q
¢ FxOxexg
¢ FkO¥Bxg

¢ FxOxPx®
¢ FkO*Pxe
¢ IxOx(Q*®
¢ IxOxPxY
¢ FROHD*Y
C RO QY

¢ IxpxOxe
¢ Ix@xOxe
¢ IxPxD*®
¢ Fk@*Oxe
C IAPHO*Y
¢ IxQ*O*Y
¢ IAPHO*Y
¢ FFA*D*V

¢ IxQxOxe
¢ FxgxOxe
¢ IxQxDxe
C FRQA OV
C IRA*O*Y
¢ IxQxD*Y

¢ IxPxqxe
¢ IxQxqxe
¢ IxPxgxe
¢ IxQxgxe
¢ IxPxQ*Y
C PR+ QY
C IAPAI*Y
¢ IxQrg*y

¢ Ix@*exd

¢ AxOxBxq
‘ dxDxexq
¢ kO*Yxq
€ AxD*V*q
¢ Jx0xexqg
¢ AxD*Bxg

¢ AxO*Pxe
¢ AxO*Pxe
¢ AxOx( *®
¢ A*O*PxY
¢ A*O*P*Y
¢ xO*A*Y

¢ AxP*Ox®
¢ Ax@xO*®
¢ AxPxDxe
¢ Ax@xD*e
¢ I*P*O*Y
¢ AxQ*O*Y
¢ A*PHO*Y
¢ IxA*O*V

¢ AxQ*Dx®
¢ Axg*xOx®
¢ dxqQxDxe
€ AxQxO%Y
C xIHO*Y
¢ A*QxD*Y

¢ AxPxqxe
¢ dxQxqxe
‘ IxPxgxe
¢ AxQxgxe
¢ A*PxQxY
¢ Ax@*q* T
¢ IxP*I*V
¢ AxQrg*Y
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Reduced P#M:-words in normal form

A4

¢ IxQxD*P
¢ IxgxO%P
¢ IxQxD*P
¢ FkqxOx(q
¢ IxgxO%(q

¢ FkDP*q %D
¢ Ix(QxqQxD
¢ IxPxg*D
¢ Ik@*g*2
¢ IxP*q*D
¢ IxQxq*D

¢ FxBxQx*D
¢ IxVxQxD
¢ IxBxg*D
¢ IxexqxD
¢ IxVxQ*D

¢ IxOxPxq
¢ IxD*Pxq
¢ FxOx(*q
¢ IxOxPxg
¢ IxD*Pxg
¢ FxOx(xg

¢ IxPxO%xq
¢ Ix*O%q
¢ IxPxD*q
¢ IxQxD*q
¢ IxPxO%g
¢ IxQ*O%g
¢ IxPxD*g
¢ Ik@*O*d

¢ IxPxexq
¢ FxQxexq
¢ IxP*Y*q
¢ IxQxY*q
¢ IxPxexg

¢ A*Q*O*P
¢ Axg*O%P
¢ A*qQ*D*P
¢ Axq*0x(q
¢ Axg*O%xd

 A*P*q %D
¢ AxQxq*D
¢ AxPxg*D
¢ Ix*g*2
¢ IxP*q*D
¢ AxQ*q*D

¢ AxBxQ*D
i E £ Ee
¢ Axexg*D
‘ AxexqxD
C A*V*q*D

¢ AxOxPxq
¢ A*xD*Pxq
¢ IOk
¢ AxOxPxg
¢ A*xD*Pxg
¢ IO *xQ*xd

¢ A*xPxD%xq
“ I*x@*x0*q
¢ I¥P*D*q
¢ AxA*0*q
¢ IxP*O*g
¢ Ix@*O*dg
¢ AxP*O*d
C IxAxD*d

¢ dxPxexq
‘ Ix@xexq
¢ A*P*Y*q
¢ A*Q*V*q
¢ Ixp*exdg
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¢ Fx@xq*Oxe
¢ IxPxg*OxC
¢ Ix@xg*Oxe
¢ IxkP*Q*D*E
 Fk@*qxD*e
¢ IAP*QxO*Y
¢ IxQxQkO*Y
 FAD*GxO*Y
C IR@xgrO*Y
¢ IxP*QkD*Y
C PR QxD*Y

¢ IxOxPxqxe
¢ FkO*Pxqxe
¢ FxOx(I*qxe
¢ IxOxPxgxe
¢ FRO*DPxgxe
¢ FxOxI*xgxe
¢ IxO*PRAxY
¢ FRO*PxA*Y
C RO QxAXY
¢ IxO*PI*Y
C FRO*PxI*Y
C TR0 QrE*Y

¢ FxPxOxqxe
¢ Fx@*kO*qxe
¢ IxkP*D*qxE
¢ Fk@*D*qxe
¢ FxP*kO*xgxe
¢ Ix(@xOxgxe
¢ FAD*Dxgxe
¢ Ix@xDxg*e
¢ IxP*O*QxY
C PR@*Ox Q%Y
¢ IAP*D*AXY
¢ Ix@xD*AXY
C IADHOxGxY
C TR@xOxG*Y
¢ IxP*D*I*Y
C TR@*D*I*Y

¢ Ix@*q*O*e
¢ AxPxg*OxC
‘ Ix@xg*Oxe
¢ AxP*Q*D*E
¢ Ak@*qxD*e
¢ IkP*QxO*Y
¢ AxQ* Q%Y
¢ AkP*G*O*Y
¢ IR+ G*O*Y
¢ A*P*QkD*Y
¢ Ik Q*D*Y

¢ IxOxPxQqxe
¢ AkO*Pxqxe
¢ IxOxI*qxe
¢ IxOxPxgxe
¢ AxD*Pxg*e
‘ IxOxI*xgxe
¢ AxO*P*QxY
€ AxD*P*A*Y
¢ RO Q* QXY
¢ AxO*Prg*Y
¢ AxD*Pkg*Y
€ RO QrE*Y

¢ IxP*Oxqxe
‘ Ix@*O*qxe
¢ AxP*D*kqxE
¢ Ax@xD*q*e
‘ IxPkO*xgxe
¢ Ix@*xOxgxe
¢ AxP*D*g*e
¢ AxQxD*g*e
¢ A*P*O*QxY
¢ AxQ*O*qxY
¢ IRPHD*AxY
¢ AxQ*D*QAxY
 AxP*O*kG*Y
¢ DR@*O*I*Y
¢ A*P*D*I*Y
 Ax@xD*g*Y
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Reduced P#M:-words in normal form

A4

¢ IxOxPxexq
¢ IxD*PxBxq
¢ IxOx(@*xexq
¢ IxO*P*Y*Q
¢ IxD*P*Vxq
¢ TxO**V*q
¢ IxOxPxCxg
¢ IxD*PxBxg
¢ FxOx(@*xexd

¢ FxQxO*exq
¢ IxgxO*xexq
¢ IxQxDxVxq
¢ IxQxO*exg
¢ IxgxO*xexg

‘ IxP*O*Bxq
¢ Ix@xO*exq
¢ IxPxDxBxq
¢ Ix@*O¥Bxq
¢ IxP*O*Yxq
¢ Ix@xOx¥xq
¢ IxP*O*V*q
¢ Ix*O*V*Qq
¢ IxP*O*Bxg
¢ Ix@*O*exg
¢ IxP*D*Cxd
¢ IxQxDxexg

¢ FxQkO*Pxe
¢ Ixg*O*P*®
¢ IxQ*D*Pxe
¢ FxQkO*x(xe
‘ Ixg*O*x( *®
¢ IxQ*O*PxY
 IxgHO*P*Y
¢ IxQxD*PxY
¢ TxQxO* QY
C TdHOxxY

¢ IxP*qQ*O%®

¢ IxOxPxexq
¢ ARO*PxExq
C AxO*xQ*xexq
¢ AxO*PxY*q
¢ ARO*PxY*q
i CLTEY £
¢ IxOxPxexg
¢ A*O*Pxxg
¢ AxO*x(Qxexd

€ AxQ*kO¥ex(q
C Ixg*xOxexq
¢ Ax QDY
¢ IxQxOxexg
¢ Ixg*Oxexd

¢ IxP*O¥exq
“ Ix@*O*exq
¢ AxPxD*Exq
 Ax@xD*C%q
¢ DKP*O*Y*q
¢ AxQ*O*Y*q
¢ AXP*D*F*Q
¢ Dk@*xD*Y*q
¢ IxPxOxexg
¢ Ix@*Oxexg
¢ AxPxD*Cxd
¢ AxQxDxCxd

¢ IxQkO*Pxe
¢ Ixg*O*Pxe
¢ Axq*kD*P*e
‘ IxQkO*x(J*C
¢ Ixg*Ox(q*C
¢ Axq*O*P*Y
¢ DREHO*P*Y
¢ A*xQxD*P*Y
¢ Ax QO *Y
¢ DREHO* KV

¢ IxP*Q*Oxe
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¢ Fx@*Q*O*Cxg
¢ FxP*g*O*Cxg
¢ Ix@xg*Oxexg

¢ FxO*P*Q*O*®
¢ IxD*P*Q*Oxe
¢ FxO*xQ*xg*O*®
¢ FkO*P*qQ*kD*®©
¢ IrO*P*Q*D*®
¢ FAO*P*QkO*Y
€ FRO*Px kO %Y
¢ IOk I*xOxY
¢ IxO*PxQx DY
€ FRO*PxA*D*Y

¢ FxexqQ*D%P
¢ FxTkQ*kO*P
¢ FxRxgxO%P
¢ IxexQkD*P
¢ IRV *QxD*D
¢ FxexqQx0x(
¢ IxTxQxkO*(Q
¢ Fxexgd*0x(

¢ FxOxPxQqQx*D
 FkO*Px Q%D
¢ FxOk@*xg*0
¢ IxO*P*kA*D
¢ FRO*P*A%D

¢ FxPxRxQqQx*D
¢ Fx@xCxqQx*D
¢ IAD*Y*Q*D
¢ Tx@kY*A%D
¢ FxPxCxg*D
¢ Fx@xexgx0
¢ IxPke*kA%D
¢ Fr@xBxq%D
¢ IAP*V*A%D
¢ Ix@xY*A%D

¢ Ix@*qQ*O*ex*xg
¢ AxP*g*O*xCxg
¢ Ax@xg*Oxexg

¢ AxO*P*qQ*O*®
¢ AxD*P*qQ*Oxe
¢ AxO*xQ*xg*O*®©
¢ AxO*xP*qQ*kD*®©
¢ I*O*P*Q*D*B
¢ AxO*¥P*Q* %Y
€ ARO*Px kO %Y
¢ AxOx@xI*x O Y
¢ AxO*PxqQx DY
€ ARO*¥PxA*D*Y

¢ AxexqQ*D %P
€ AxT*q*kO*P
¢ IxBxg*xOxP
¢ AxexqQkD*P
€ AxT*Q*kD*P
¢ IxexqQ*0*(
¢ AxV*QxO%x(q
¢ Axexgd*0*(J

¢ AxO*P*QqQ*D
€ A*xD*P*q*D
¢ Ix Ok @+ g*D
¢ A*O*P*Q*D
€ AxD*P*A*D

¢ IxPxexQqQ*D
¢ Ix@*C*xq*D
¢ IKP*Y*Q*D
¢ AxQ*Y*Q%D
¢ IxPHCxg*D
¢ Ix@*xe*xg*D
¢ AxPxe*xqxD
¢ Axxe*q*D
¢ IFP*T*A%D
¢ AxQ*Y*A*D
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Reduced P#M:-words in normal form

A4

¢ Fxg* Ok kKD
¢ IxQxO*P*BxqxD
¢ IxgxO*P*Cxq%D
¢ IxQxD*PxT*q*D

¢ IxO*P*xQxOxBxq
¢ IxD*P*Q*kOkBx(q
¢ IxOkIxg*OxB*q
¢ IxO*PxQxD*Y*q
¢ IxD*PxQx DY
¢ FxO*kP*Q*kOxCxg
¢ IxD*P*xQ*xOxCxg
¢ IO *xg*kO*Bxg

¢ FxOxP*CxqxD
¢ FxD*P*C*xqQ*D
¢ IxO*kP*F*qx0
€ IROHPHTkQ*D
¢ AxO xRk g%
¢ AxO¥P*CxqQ*D
¢ IRO*PxBRA*D
¢ AxO*PxYxq*D
€ ARO*P* V%D

¢ FxQ#D*P*B*q
¢ Fxg*O*xPxexq
¢ FxQkO*x(QxCxq
¢ Fxg*O*x *C*q
€ FRQHD*PxY*q
¢ FxQkO*xPxexg
¢ Fxg*D*P*Cxg
¢ FxQ#OxQ*Cxg
¢ FxgxO*xQxeCxg

¢ FxP*Q*O%Bxq
¢ Fx@xQ*Oxexq
¢ FxP*g*O*Bxq
¢ Fx@xg*O*Cxq
¢ IAP*QxD*Y*q
¢ IxQxQrD* Y
¢ FxP*Q*O%Cxg

¢ A+ GOk *CkT*D
¢ Axqx Ok P*CxqxD
¢ AxgxOkP*xCxqxD
¢ AxQxD*P*T*q*D

¢ AxO*P*Q*xOxB*q
¢ AxD*P*QkO*B%(q
¢ AxOxIxG*OxB*q
¢ IxO*P*QxD*Y*q
¢ AxD*PxQxD*F*xq
¢ AxO*P*Q*xOxBxg
¢ AxD*P*Q*xOxBxg
C AxO k@ IkO*BxT

¢ AxO*P*C*xqxD
¢ AxD*P*C*xqQ*D
¢ AxO¥P*Y*qQ*D
JECTOL <L) FreEie)
¢ FxO*P*C*xqQ*)
¢ FRO*PxB*RA*D
¢ IAOAP*TkA*D
¢ IxD*PxYxq*D
¢ TR0k Cxg*D

¢ IxQ*D*P*B*q
¢ Axg*O*xP*exq
¢ AxQxOxIxC%q
¢ Axg*O*x *C*q
¢ AxQxD*PxT*q
¢ AxQxO*xPxeCxg
¢ Ixg*O*xP*exg
¢ Ax QO *xq*C*xg
¢ Axg*xO*xQxCxg

¢ A¥P*Q*D%Bxq
¢ Ax@xQ*Oxexq
¢ I¥P*g*O*B%q
¢ Ax@*xg*O*C%xq
€ A*P*Q*D*Y*q
¢ IxQ*QxD* Y
¢ A¥P*Q*O*Cxg
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¢ FxQ#D¥PkCRkQ*D
¢ FTxgxOkP*kCxQ*D
¢ IxQxD*PxY*QxD
¢ FxQO kKKK

¢ A*Q*kD*PkRKQ*D
¢ AxI*OkP*kCxqQ*D
¢ A*xQ*D*PxTxq*D
¢ Ax QO kKK G*O
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1%} null set
X-Y {reX:z¢Y}
Z(X) power set of X
real numbers
integers
Z~o positive integers
Z>o non-negative integers
Ly {€Z:2>ux}
L>y {€Z:2z2>x}
sT {st:teT}
ST {st:seS,teT}
Z/mZ integers modulo m
DBy, k-th Bell number
F (k) k-th Fibonacci number with .# (1) = #(2) =1
p(k) number of integer partitions of k
p(m, k) number of integer partitions of k into parts of size
less than or equal to m
op(k) number of ordered integer partitions of k
op(m, k) number of ordered integer partitions of k into parts

of size less than or equal to m

max{y €Z:y <z}

min{y € Z:y >z}

x =y (mod m) y—x €mil
x Zy (mod m) y—x ¢ mZ
r=y=zmodm) | y—x,z—x,2z—y €mZL
D,H, T, LR Green’s relations
S+ free semigroup of S
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NOTATION

S* free monoid of S
(Rq,... ,’Rn>T congruence relation generated by relations Rq,..., R,
Dy set of k-diagrams
§ gy 0 ¢ and ¢’ have the same connected components
F(51, . ,(5p) product graph of diagrams 41, ..., 6,
U (b) upper vertices contained in block b
u(b) number of upper vertices contained in block b
L(b) lower vertices contained in block b
(D) number of lower vertices contained in block b
idy identity bipartition
adp horizontal sum of bipartitions o and
a* vertical flip of bipartition «
UN(a) upper non-transversal blocks in bipartition «
LN(a) upper non-transversal blocks in bipartition a*
T () transversal blocks in bipartition «
UT () {UDB):beT(w)}
LT(a) {L(b) : b e T(a)}
U(a upper pattern of bipartition «

lower pattern of bipartition «
{U(a) : v € A}
{L(a) : v € A}

rank(«) number of transversal blocks in bipartition a
; i-th transposition generator
t; i-th (2, 2)-transapsis generator
a i-th m-apsis generator
S; i-th diapsis generator, ie. &; = a?
fi, b i-th PZS}, generators
Sk symmetric group
Pr. partition monoid
PPy planar partition monoid
By Brauer monoid
N Jones monoid
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ISk

symmetric inverse semigroup

PZSy planar symmetric inverse semigroup
S monoid of uniform block bijections
P3x monoid of planar uniform block bijections
e m-apsis generated diagram monoid
Xa;" crossed m-apsis generated diagram monoid
o modular partition monoid
P planar modular partition monoid
tg run of m-apsis generators, ie. aj"...a;"
o m~apmorphisms
e transversal building blocks
g upper non-transversal building blocks
e lower non-transversal building blocks
C[Sk] symmetric group algebra
C4[Pg] Partition algebra
C4[By] Brauer algebra
C¢ [T Temperley-Lieb algebra
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